M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Security Supplement
to the
Software Communications Architecture Specification

Attachment 1

Security Application Program Interface
Service Definition

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Revision Summary

| 1.0 | Initial Release

1

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
Table of Contents

INTRODUGCTION. ...ttt sttt st sttt e et st st e sbesbe s st s e e s e nseneesbesbenreas 1-1
1.1 OVERVIEW. ..ottt ettt st bbbt be et e et et st enbenreans 1-1
1.2 MODES OF SERVICE.......coii it ieiticieieiesie e se st ae e ste e ene e e ensestessessennenns 1-1
121 Fill IMOOES. ..ottt bbbttt b bbb bt enean 1-1
1.2.2 Crypto Channel MOUES.cccocuiiieiicie ettt ens 1-1
1.3 SERVICE STATES.....oo oottt sttt sttt sae st sseeneese e e e enaenaesrentenneann 1-2
1.4 REFERENCED DOCUMENTS........ooi ettt na e e sneens 1-2
(U1 1 SRR PPRR 2-1
SERVICES. ..ottt sttt sttt be e se st e s e e te s e e s besbeebeeseese e e e e e eessentenreans 31
3.1 GAINING ACCESS TO SECURITY SERVICES.ccooeiireresestese e 3-3
3.2 SECURITY . ittt sttt sttt et e s b e b s bt e bt bt e st et e e e b e nbenbenbeebe e 3-4
G It RV = 1 =T [0= o | PSPPSRI 34
T T 1 S 3-5
3.3.1 POrt and POrt USEr SEIVICES......cccciiiieriiniesiesiiseeee ettt sttt se st st sse e 3-5
332 BUS SENVICE....cuiiuieieiies ettt sttt st e bbb e b bt e st e e e e s e besbeebe e b e e neeneens 3-8
3.3.3 MaANAGEMENT SEIVICE. ...oeiiuiiiieiieeeie ettt sttt b et e e e b e b b ne s e ene e ens 3-8
3 I €1 I I 1 S 3-10
341 ManNAQEMENT SENVICEeeiueeieeeecteestecee st e ste e st e st e s e s e e seeseesre e teeneesseeseeneesseenseeneennes 3-10
I O = I 1 1 O N I ST 311
351 ManNAQEMENE SEIVICE. ...ccueiuieiieieieeesie sttt sttt st se et e e nb e bt seesne e e enes 3-11
I O o o I SRS 311
G0 R O 1 0 IS = ol PR P 311
3.6.2 ENCIYPUDECIYPL SEIVICE. ...t sttt sttt sttt sn e s b e sne e enes 3-14
I - = OSSP 3-18
3.7.1 ManNAQEMENT SENVICE.coiuieiieieeieeiieeee st este e e st este s e sre e aeeseesaeenseeneesseesesnsesseensesneesnes 3-18
3RS T I 7 A NN S 3-20
I3RS I R 0 1 0 = o S 3-20
3.8.2 KEY SIrAM SENVICE.....cueeiieeiecee sttt sttt st st e ae e s ae e te e sreeseenneeneenteeneenns 3-22
3.8.3 MaANAQEMENT SEIVICE.coiuieiiiieeieeiie ettt sttt st be et et esreebe e e sbeeneeeneenns 3-23
IS T = © |0 O R 3-24
3.9.1 ManNAQEMENT SENVICE.coieeieeiesieeiieeeesee e e ee s e e eee e esseeseesseesteeneesreesseeneesseensenneesnes 325
310 INTEGRITY AND AUTHENTICATION.ccctriririeieniesiesiesie st es e see s enes 3-26
3.10.1 Control and Digital Sgnatures Provider SErVICES.........cocuverererieenierieriese e 3-26
311 ALARM . ettt b bttt b e a e b nre s 3-29
0 I = SRR 3-30
30 52 I 1 VS 3-30
3.12.1 MaANAGEIMENT SEIVICE. ...oveiirieeieeierieste sttt sttt ettt sb e sbe e e e et e b et sbe b ne e enes 3-30
TN G T €1 TSR 3-32
N Nt R |V = P20 (=0 0 < o | TSROSO 3-32

MSRC-5000SEC
Security APl Service Definition

rev. 1.0

4 SERVICE PRIMITIVES. ...ttt ettt aa s e s s sabbaa e e e s e e 4-1
g T TG0 I /2 4-2
O A o @ | 74 Y I PSR 4-2
i e I OO R 4-3
421 FILL PORT CONFIGURE.c.ootiiieictie e eree e ee e siee e svee e s e e s e s e ene e enneas 4-4
422 FILL PORT ENABLE.o oottt e e s e e ere e s enneas 4-5
4.2.3 FILL PORT _DISABLE.cc ottt sttt s 4-6
424 FILL PORT _LOAD. ..ottt ettt s st e e ebe e e ssa e e snne e e enneeeenneas 4-7
425 FILL PORT _SIGNAL CONNECT. ..ot e ccie e see e sree e sree e e e e 4-8
4.2.6 FILL PORT _SIGNAL_LOAD. ..ot ittt sttt sneesree s 4-9
4.2.7 FILL PORT_SIGNAL_ASSIGN ID. ..oiiiiiiiiiiieiiiie et 4-10
4.2.8 FILL BUS LOAD. ...ttt sttt s sne e e sae e e snne e e snne e e enneeeanes 4-11
4.2.9 FILL ZEROIZE. ..ottt sttt ettt ettt nse s st sssae b snteenneesnneennee s 4-12
4.2.10 FILL ZEROIZE ALL. ..oooiiiitieee ettt ettt ettt snte e e snneennee s 4-13
g I I I I 1 I 1 S 4-14
Rt v e I o | SR 4-15
G T N I €10 I N | O 4-16
431 ALG ZEROIZE....... ettt bbb s e snre e e enne e anes 4-16
I I C A = o @ |74 = RS 4-16
4.3.3 ALG GET IDS ..ottt ettt st sbe e st e et esna e nbe e snteesbeasnneensee s 4-16
e A I = o 11 PSR 4-16
L O I O N = 4-17
441 CERT _ZEROIZE.......oo oottt ettt ettt nbe s ssae b snteenbeesnneennen s 4-17
442 CERT _ZEROIZE ALL...c..ooiiiee ettt sttt ettt st sne e nne s 4-17
443 CERT _GET IDS...o ettt s sb e st e e sne e e snne e e enneeeanes 4-17
N O o I = 1 RS 4-17
Y O3 = = 1O TS 4-18
451 CRYPT _CREATE CHAN. ...ttt ettt st sne e sne e e nnneeeanes 4-20
452 CRYPT _GET CHAN CONFIG.....cccoie e ceee et e st e e st e e s e e snee e 4-23
453 CRYPT_DESTROY _CHAN. ..ooo ittt sttt et sn e s s ssaeesaeesnneennee s 4-24
454 CRYPT _START CHAN. ..ottt ssre e sba e sbe e e sae e s snbe e e enneeennes 4-25
455 CRYPT _STOP _CHAN. ...ttt see et e e saae e s e e s nne e e sre e e sbe e e snne e e snseeeenneeeanes 4-26
456 CRYPT _RESET CHAN. .. .oii ittt st s sbe s ssa e s snte e sneesnneennee s 4-27
A5.7 CRYPT _RESETottt ettt et ae e st e et e e s ateenseesateesbeesnneenseeas 4-28
4.5.8 CRYPT ENCRYPTttt sre e st e e e sne e e snne e e enneeeanes 4-29
e I O A e I B 1 (O ¢ i S 4-30
4.5.10 CRYPT_ENCRYPT _WITH_ID. ..oiiiiiiie ittt st 4-31
4.5.11 CRYPT _DECRYPT WITH _ID. .ottt sttt 4-32
4.5.12 CRYPT _TRANSFORM REQ......ccttiiiieiieeeecieeeeeee e seeesseeessteeessaeesseeesnneesnseeesnneeennes 4-33
4.5.13 CRYPT_TRANSFORM_REQ WITH _ID...ccciiiiiiiiciiecie ettt 4-34
T 1 = 4-35
4.6.1 KEY ZEROIZE. ... oottt e ettt e e st e e sr e e ste e e s e e snae e e enneeeanes 4-35
4.6.2 KEY ZEROIZE ALL...utiiiiiiiiiie ettt sttt st snae e sneesnneennee s 4-35
4.6.3 KEY _GET IDS ..ottt ettt ettt et st e et sate e beesnneennee s 4-35
G R S o R) QS 4-35
T S = 1 I A I S 4-36

MSRC-5000SEC
Security APl Service Definition

rev. 1.0

46.6 KEY _GET UPDATE COUNT. ...ooiiiiiicie et 4-37
4.6.7 KEY _STORE _KEY.... oot iiiiiiie it cee s ee et e et e s sate e s aee e sae e e sna e e sna e e snneeesnneeesnneeennes 4-38
A7 TRANSERQC. ..ottt e e e ettt e e e e b b e e s e bt a e e e e eabeeeessabbeeeesasbaeeesanbaneens 4-39
4.7.1 TRAN_CREATE CHAN. ...ttt ettt ettt sa e sb e snteesaeesnneennee s 4-40
47.2 TRAN_GET CHAN CONFIG. ...ttt st 4-42
47.3 TRAN _DESTROY CHAN.... .ottt e e sre e e sbe e e sne e e snne e e enneeeenes 4-43
474 TRAN_GEN _KEY _STREAM. ..ottt ettt sttt sne s sae e e snaeensee s 4-44
475 TRAN_GEN NEXT KEY STREAM. ...cccie ettt st 4-46
A7.6 TRAN ZEROIZE.........ooo ettt ettt e se e s aee e st e e sba e e st e e sne e e sntee e enneeeanns 4-47
A7.7 TRAN ZEROIZE ALL. ...ttt sttt st snte e saeasnaeennee s 4-47
47.8 TRAN_GET IDS...oo ettt s e e ene e sr e e e enneeeanes 4-47
A4.7.9 TRAN EXPIRY. ...ttt e s e s ae e e s e e sae e e enneeesnteeeennneeanes 4-47
A.7.10 TRAN _STORE.......cciiitiiieiieeiee sttt eseeste et e seessseessee st e s aessseessseenbesasseessessssessseesnsennsenss 4-48
A.7.11 TRAN_GET FILL. oottt sttt st b e sate e sae e s nneennee s 4-49
T =] 4-50
N R = O | I = o | 174 S 4-50
4.8.2 POL_ZEROIZE ALL....oooiiiiiieiieeiee e eitee sttt ste st ae st sae b ssneesseessaeesneesnseennee s 4-50
G N = O | I € B 1 SRS 4-50
I S = O | I = o 1 | RS 4-50
4.85 POL_GET POLICY. .ttt sttt sttt et be s snae s snseesaeasnseensee s 4-51
4.9 INTEGRITY AND AUTHENTICATION. ..ottt nrrene e 4-52
491 A CREATE CONTEXT. ..cii e ceeceiee e steeertee et e e saee e sae e e sne e e sba e e sne e e snneeesnneeeanes 4-53
4.9.2 |A DESTROY _CONTEXTttiiiiiiieiieeiteesiessieeseeesseesaesssessssesssesssseessessssesssessssesssenss 4-54
4.9.3 TA SIGN _FILE. ..ottt e st b e st e ae e s reennee s 4-55
e NV o I o 1 PR 4-56
S T AN AN S 4-57
4.9.6 TA SIGN _HASH. ...t e b e s e et saae e beeenreennee s 4-58
4.9.7 1A VERIFY HASH. ...t st e e s e e enne e e 4-59
g O T A IO A Y/ 4-60
4.10.1 ALARM _SIGNAL ..ottt ittt sttt st be e s aeesbe s ssaeesbeessseesseessseesneesnseenseeas 4-62
g I R N 1Y O 4-63
o I T I 1Y s o I |5 PSS 4-64
4.11.2 TIME_GET _TOD. ...uoiiiiiiiiciee sttt sttt st ae s ssae b e ssseenseessteenneesnseenseess 4-65
4.11.3 TIME _SET DATE. ...ttt sttt et sttt sttt e s nn e e ebe e snte e aeesnneennee s 4-66
4104 TIME _GET DATE. ...ttt e ae e s e e s sre e st e e sne e e snse e e nnneeeanes 4-67
o € = SOOI 4-68
4.12.1 GPS ZEROIZE. ...ttt ettt ettt ettt et s ae s sta b s snaeesseesnteesbeasnseenneeas 4-68
4.12.2 GPS ZEROIZE ALL. ...ttt ettt sttt e s e e sae e snne e e snneeeanes 4-68

I G R €1 S Y €1 = I 1 5 3 SRS 4-68
A.12.4 GPS EXPIRY. ..ottt sttt sttt ste e be e s aeense e sste e beesnseenseesnseenseesnseenseeas 4-68
ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES. ..., 51
LT R o I Y 1N = 5-1
5.2 CRYPTO CHANNEL STATES ...ttt ettt evre e eava e e saba e s ennes 5-2
5.3 TRANSEC CHANNEL STATES. ... oottt s 5-5
54 INTEGRITY AND AUTHENTICATION STATES. ... 5-6

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
APPENDIX A PRECEDENCE OF SERVICE PRIMITIVES.......ccoiiiiiieeeeeeseee e A-1
APPENDIX B SERVICE USER GUIDELINESccoiiiiiieeeee e B-1
APPENDIX C SERVICE PROVIDER-SPECIFIC INFORMATIONccccviiiiiiinenie e C-1
FN o N1 T 1 3 I 5 P D-1
List of Figures

Figure 3-1. JTRS SECUIItY SErVICE GIOUDSccveeeeirieteeeesreesteeeesseesseseesseesseesesseessessesseessessssssesns 3-1
Figure 3-2. JTRS SECUMLY DEVICE......ccccuieitieceesiee ettt sttt st e e sbe e st e sae e anne s 3-4
Figure 3-3. Sequence Diagram: Zeroizing all Elements within a Security Service...........ccocveeen. 3-4
Figure 3-4. Sequence Diagram: DS-101 or RS-232 Fill using Port and Port User Services.......... 3-5
Figure 3-5. Sequence Diagram: DS-102 Fill using Port and Port User Services...........ccccveeveenee. 3-7
Figure 3-6. Sequence Diagram: Filling the Radio from a File using the Bus Service.................... 3-8
Figure 3-7. Sequence Diagram: Zeroizing an Element using the Management Service................. 3-9
Figure 3-8. Sequence Diagram: Zeroizing all Elements using the Management Service............... 3-9
Figure 3-9. Sequence Diagram: Getting the Identifiers of all Elements using the Management

IS Yo OSSR 3-10
Figure 3-10. Sequence Diagram: Getting Expiration Info using the Fill Management Service... 3-10
Figure 3-11. Sequence Diagram: Creating a Channel using the Crypto Control Service............. 311
Figure 3-12. Seguence Diagram: Destroying a Channel using the Crypto Control Service......... 3-12
Figure 3-13. Sequence Diagram: Getting the Configuration of a Crypto Channel using the Crypto

(@00 Tg 110 IS Ao RSP 3-12
Figure 3-14. Sequence Diagram: Starting a Crypto Channel using the Crypto Control Service.. 3-13
Figure 3-15. Sequence Diagram: Stopping a Crypto Channel using the Crypto Control Service 3-13
Figure 3-16. Sequence Diagram: Resetting a Crypto Channel using the Crypto Control Service 3-14
Figure 3-17. Sequence Diagram: Resetting the Cryptographic Subsystem using the Crypto Control

IS Yo OSSR 3-14
Figure 3-18. Sequence Diagram: Same Side Encryption using the Encrypt/Decrypt Service...... 3-15
Figure 3-19. Sequence Diagram: Same Side Decryption using the Encrypt Decrypt Service...... 3-16
Figure 3-20. Same Side Encryption with Channel Identifier using the Encrypt/Decrypt Service 3-16
Figure 3-21. Same Side Decryption with Channel Identifier using the Encrypt/Decrypt Service 3-17
Figure 3-22. Sequence Diagram: Encryption/Decryption using the Encrypt/ Decrypt Service.... 3-17
Figure 3-23. Sequence Diagram: Encryption/Decryption with Channel Identifier using the

ENCIrypt/DECIYPE SEIVICE.. .ottt s 3-18
Figure 3-24. Sequence Diagram: Storing a DS-102 Key using the Key Management Service. ... 3-19
Figure 3-25. Sequence Diagram: Updating a Key using the Key Management Service............... 3-19
Figure 3-26. Sequence Diagram: Getting the Update Count of a Key using the Key Management

S Yot 3-20
Figure 3-27. Sequence Diagram: Creating a TRANSEC Channel (Key Stream) using the

TRANSEC CONIOl SEIVICEevieeeieeeieeieesieeie ettt nse e 3-21

Figure 3-28.

Figure 3-29.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
Sequence Diagram: Getting a TRANSEC Channel Configuration using the TRANSEC
(00011 (0] IS 4V o = NS 3-21
Sequence Diagram: Destroying a TRANSEC Channel using the TRANSEC Control
[3-22

Figure 3-30. Sequence Diagram: Generating a Key Stream with a New Seed using the TRANSEC
KEY SITEAM SEIVICE. ..ottt e sttt e e e e neeneenneenes 3-22
Figure 3-31. Sequence Diagram: Generating a Key Stream without a New Seed using the
TRANSEC K@y SIream SEIVICE........cooiieririirieeeceeee et 3-23
Figure 3-32. Sequence Diagram: Storing DS-102 TRANSEC Information using the TRANSEC
MaNAGEMENT SEIVICE.......iceeieeeie ettt e ettt et e esre e be e e e sreeseeneesreeneas 3-23
Figure 3-33. Sequence Diagram: Getting Unclassified TRANSEC Fill Info using the TRANSEC
MENAGEMENT SENVICE.......e ittt e e b sresne e 3-24
Figure 3-34. Security POlICIES aNd BYPaSS........ccceevuiiieiicie e seese e ie e see et 3-25
Figure 3-35. Sequence Diagram: Getting a Security Policy using the Policy Management Service....
... 3-26
Figure 3-36. Sequence Diagram: SIgning aFile.........coov e 3-26
Figure 3-37. Sequence Diagram: Verifying aFile ..o 3-27
Figure 3-38. Sequence Diagram: Generating and Signing aHash. ... 3-28
Figure 3-39. Sequence Diagram: Verifying a Digital SIgnature..........ccccocvvererniienenenene e 3-29
Figure 3-40. Sequence Diagram: Signaling a Crypto Alar..........cccecveveieeieeie s e 3-30
Figure 3-41. Sequence Diagram: Setting Time using the Time Management Service................. 3-30
Figure 3-42. Sequence Diagram: Getting Time using the Time Management Service................. 3-31
Figure 3-43. Sequence Diagram: Setting Date using the Time Management Service.................. 3-31
Figure 3-44. Sequence Diagram: Getting Date using the Time Management Service.................. 3-32
Figure4-1. Class Diagram: JTRS Security COMMON TYPEScccverueruerierierrerieseseseeseesseseeseesseseens 4-1
Figure 4-2. Class Diagram: JTRS Security Management SEIVICE........cccuvvervevereereeseeseesseeseesneenns 4-2
Figure 4-3. Class Diagram: Fill SErVICES........ccovviiiiiiiee ettt 4-3
Figure 4-4. Class Diagram: Algorithm Management SErVICE........cccvvverirerenieeieenenesese e 4-16
Figure 4-5. Class Diagram: Certificate Management SErViCe.........ccovvvrenerenienieenese s 4-17
Figure 4-6. Class Diagram: Crypto Control SErVICE........cceiveiieie e 4-18
Figure 4-7. Class Diagram: EnCrypt/DeCrypt SEIVICEScocuereriiireerieeie e seeie e sie s 4-19
Figure 4-8. Class Diagram: Key Management SEIVICE........courveerererereseseseeee e 4-35
Figure 4-9. Class Diagram: TRANSEC SEIVICES.......ccccieieiieieeieeeeseesieseeseeneeseessesnaesseesseennens 4-39
Figure 4-10. Class Diagram: Policy Management SErVICe.........cccveveveieeiieciiee e 4-50
Figure4-11. Class Diagram: Integrity and Authentication SErviCes........ccocvverereeieiesene e 4-52
Figure 4-12. Class Diagram: Alarm Type DefiNitioNS..........ccooveiieieiecie e 4-60
Figure 4-13. Class Diagram: Alarm SEIVICEc.ecciiieiieie et sre et sne e 4-61
Figure 4-14. Class Diagram: Time Management SEIVICEcoceveiererereneseeeeeeeesee e 4-63
Figure 4-15. Class Diagram: GPS Management SENVICEcocveverererereseseseeeeee e 4-68
Figure 5-1. Fill State TranSItiONS........ccciviieiieiecie sttt see et e e e sreen e e e sreennesnee e 5-2
Figure 5-2. State Diagram: Crypto Channel State TranSitions..........coceveeierienienesie e 5-4
Figure 5-3. State Diagram: TRANSEC Channel State Transitions..........coovveeeeevrenereneneneeesennes 5-5
Figure 5-4. State Diagram: Integrity and Authentication Context State Transitions....................... 5-6

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
List of Tables

Table 3-1. Cross-Reference of Services and PrimitiVES.........c.covveievieneeie s 3-2
Table 3-2. Encrypt/Decrypt Primitive Cross-reference Table.........ccovveeveevevceeveece e 3-15
TaADIE5-1. Fill SEALES.....uecueeiieieee ettt sttt e et be b nne e 5-1
Table5-2. Crypto Channel SEALES.........ccoiirieieieieriese et 5-4
Table5-3. TRANSEC Channel SLaLES........ccccceiieieeieieeie ettt eneas 5-5
Table 5-4. Integrity and AUthentiCation SEALES..........cciveiieie i 5-6

vi

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

1 INTRODUCTION.

1.1 OVERVIEW.

This document specifies the application program interfaces (APIs) for security services that are
required in a secure JTRS-compliant radio.

1.2 MODESOF SERVICE.

The JTRS security service does not identify global modes but does identify modes within certain
services. The following paragraphs enumerate the modes defined this document.

1.2.1 Fill Modes.

The security API defines four modes for filling aradio. Three of the modes are entered by
configuring the fill port and are mutually exclusive for that port. They are DS-101, DS-102 and
RS-232. The fourth mode fills the radio from afile that does not enter the system through the fill
port.

1.2.1.1 DS-101Fill Mode.

The DS-101 fill mode supports the DS-101 fill protocol at the fill port. This mode is essentially
autonomous once the information load has commenced. The fill information may contain
multiple keys, algorithms and TRANSEC information.

1.2.1.2 DS-102Fill Mode.

The DS-102 fill mode supports the DS-102 fill protocol at the fill port. This mode requires
human intervention and the API is defined to reflect this.

1.2.1.3 RS-232Fill Mode.

The DS-102 fill mode supports the DS-102 fill protocol at the fill port. This mode is similar to
the Bus Fill mode. A fileistransferred through the fill port.

1.2.1.4 BusFill Mode.

The Bus fill mode supports input of fill information from a file which enters the system like
other software. The file may contain keys, TRANSEC and other information in an encrypted
file. Thisfill is passed to the cryptographic module using the Bus service.

1.2.2 Crypto Channel Modes.

When a crypto channdl is created it is created to operate in one of five modes. The five modes
are defined in the following paragraphs.

1.2.21 Simplex Receive M ode.

The channel is configured for received only. The crypto does not allocate any resources to
support transmit.

1.2.2.2 Half-Duplex Mode.

The channdl is configured for transmit and receive. The crypto allocates its resources to support
both transmit and receive, but not simultaneously.

1-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
1.2.2.3 Full-Duplex Mode.

The channel is configured for transmit and receive. The crypto allocates its resources to support
both transmit and receive simultaneously.

1.2.2.4 Red Side Mode.

The channel is configured for red side only behavior. The crypto allocates its resources such that
the results of encryption or decryption of data entering the red side exit on the red side.

1.2.25 Black Side Mode.

The channel is configured for black side only behavior. The crypto allocates its resources such
that the results of encryption or decryption of data entering the black side exit on the black side.

1.3 SERVICE STATES.
States are described in section 5.

1.4 REFERENCED DOCUMENTS.
None.

1-2

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

2 UUID.
To be assigned upon formal release of this document.

2-1

2-2

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

3 SERVICES.

The entirety of the JTRS Security Service can logically be represented as composed of service
groups. The Unified Modeling Language (UML) package diagram in Figure 3-1 depicts the
JTRS Security Service and its service groups as packages. Each of these groups represents a
functional area of security that directly or indirectly supports secure JTRS radio operation. Each
functional group contains one or more related services. The service groups aso provide naming
scope for services within different groups that are related. An example of this is a management
service. Several of the service groups contain a management service. The general behavior of
this service is the same across certain groups. What differentiates the specific behavior is the
type of element being managed, which is identified by the service group (e.g. Key).

JTRSSecurity
Alarm _ Algorithm Certificate
(from JTRSSecurity) (from JTRSSecurity) (from JTRSSecurity)
Crypto Fill GPS
(from JTRSSecurity) (from JTRSSecurity) (from JTRSSecurity)
landA Key Policy
(from JTRSSecurity) (from JTRSSecurity) (from JTRSSecurity)
Time _ Transec
(from JTRSSecurity) (from JTRSSecurity)

Figure 3-1. JTRS Security Service Groups
The individual primitives that may flow between the Service User and Service Provider define

each service within a service group. The services and primitives are tabulated in Table 3-1 and
described more fully in the remainder of this section.

3-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Table 3-1. Cross-Reference of Services and Primitives.

Service Group Service Primitives
Security M anagement ZEROIZE _ALL
Fill Port FILL_PORT_CONFIGURE,

FILL_PORT_ENABLE,
FILL_PORT DISABLE,
FILL_PORT LOAD

Port User FILL_PORT _SIGNAL_ASSIGN_ID,
FILL_PORT_SIGNAL_LOAD,
FILL_PORT SIGNAL_CONNECT,
Bus FILL BUS LOAD

Management FILL_ZEROIZE,

FILL_ZEROIZE ALL,
FILL_GET_IDS,

FILL_EXPIRY

Algorithm Management ALG ZEROIZE,
ALG_ZEROIZE ALL,
ALG_GET_IDS,

ALG EXPIRY

Certificate Management CERT_ZEROIZE,
CERT_ZEROIZE_ALL,
CERT_GET_IDS,
CERT_EXPIRY

Crypto Control CRYPT_CREATE_CHAN,
CRYPT_DESTROY_CHAN,
CRYPT_GET_CHAN_CONFIG,
CRYPT_START_CHAN,
CRYPT_STOP_CHAN,
CRYPT_RESET_CHAN,
CRYPT_RESET
Encrypt/Decrypt | CRYPT_ENCRYPT,
CRYPT_DECRYPT,
CRYPT_ENCRYPT_WITH_ ID,
CRYPT_DECRYPT WITH_ ID,
CRYPT_TRANSFORM_REQ,
CRYPT_TRANSFORM REQ WITH_ID

Key Management KEY_ZEROIZE,
KEY_ZEROIZE ALL,
KEY_GET_IDS,
KEY_EXPIRY,
KEY_UPDATE,
KEY_GET_UPDATE_COUNT,
KEY_STORE KEY

3-2

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Service Group Service Primitives

TRANSEC Control TRAN_CREATE_CHAN,
TRAN_GET_CHAN_CONFIG,
TRAN_DESTROY_CHAN

Key Stream TRAN_GEN_KEY_STREAM,
TRAN_GEN_NEXT KEY_ STREAM
Management TRAN_ZEROIZE,

TRAN_ZEROIZE ALL,
TRAN_GET_IDS,
TRAN_EXPIRY,
TRAN_STORE,

TRAN GET FILL

Policy Management POL_ZEROIZE,
POL_ZEROIZE_ALL,
POL_GET_IDS,
POL_EXPIRY,

POL_GET POLICY
Integrity and Control IA_CREATE_CONTEXT,
Authentication IA_DESTROY_CONTEXT
Digital Signatures | IA_SIGN_FILE,
IA_VERIFY_FILE,

IA_HASH,

IA_SIGN_HASH,

IA_VERIFY _HASH
Alarm User ALARM_SIGNAL
Time Management TIME_SET _TOD,

TIME_GET_TOD,
TIME_SET_DATE,
TIME GET_DATE
GPS Management GPS _ZEROIZE,

GPS _ZEROIZE_ALL,
GPS_GET_IDS,
GPS_EXPIRY,

GPS _STORE,

GPS GET FILL

3.1 GAINING ACCESSTO SECURITY SERVICES.

Figure 3-2 shows an SCA component which isa CF::Device. The deviceisalogical
representation of a cryptographic subsystem. The device has several ports. Each port represents
a security service. For example the Key Management Serviceis at one port while the Crypto
Control Serviceis at another. Each of these ports has an identifier. When a Security Service
User needs to gain access to a service it invokes the getPort operation on the security device with
the port identifier asinput. The getPort operation returns the object reference of the service

3-3

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
provider which can then be passed to the service user through the CF::Port ::connectPort
operation. The service user can then invoke the primitives that comprise the service.

Ports

Security Device

Figure3-2. JTRS Security Device

3.2 SECURITY.

Security at the top level has one service, a management service.

3.21 Management.

Figure 3-3 illustrates a Service User invoking the ZEROIZE_ALL primitive of the Security
Management Service. The ZEROIZE_ALL primitive zeroizes all elements of fill information. It
is equivalent to invoking the individual zeroize al primitives of the Algorithm, Certificate, Key,
Policy and TRANSEC Management Services.

Security Management . 1Manager)
Service User

. 1. ZEROIZE_ALL .

1

Figure 3-3. Sequence Diagram: Zeroizing all Elementswithin a Security Service

3-4

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

3.3 FILL.

The fill services defined in the security API consist of services to get fill information into a JTR
and to manage that information.

3.3.1 Port and Port User Services.

Figure 3-4 shows a sequence diagram of a DS-101 or RS-232 type fill using the Port and Port
User services. The Port service is implemented by the security service. The Port User serviceis
implemented by the user of the security service (e.g. the human machine interface (HMI)
software).

. PortUser : (Port)

, 1. FILL_PORT_CONFIGURE

iy

1.1. FILL_PORT_SIGNAL_CONNECT

2. User Connects Device

3. FILL_PORT_ENABLE

____{:___.| ——

3.1. FILL_PORT_SIGNAL_LOAD

i

g
T

4. FILL_PORT_LOAD

| I— e —

5. User Disconnects Device

6. FILL_PORT_DISABLE

B T |

Figure 3-4. Sequence Diagram: DS-101 or RS-232 Fill using Port and Port User Services
1. ThePort User invokesthe FILL_PORT_CONFIGURE primitive that configures the
Fill Port for a mode of operation which in this case is DS-101 or RS-232.

1.1 TheFill Portinvokesthe FILL_PORT_SIGNAL_CONNECT primitive on the Port
User to notify the user to connect the fill device.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

The user connects the fill device to the Fill Port.

The Port User enables the Fill Port by invoking the FILL_PORT_ENABLE primitive
on the Port.

3.1 TheFill Port invokesthe FILL_PORT_SIGNAL_LOAD primitive on the Fill Port
User to notify the user to begin the loading from the fill device.

4. TheFill Port User invokesthe FILL_PORT_LOAD primitive to start the load through
the fill port.

5. The user disconnects the fill device from the Fill Port.
6. ThePort User invokesthe FILL_PORT_DISABLE primitive on the Fill Port.

Figure 3-5 shows a sequence diagram of a DS-102 fill using the Port and Port User services. The
Key Management Service isincluded for clarity. The TRANSEC Management service has an
equivalent primitive. A DS-102 fill requires more human intervention than either a DS-101 or
RS-232 typefill. The Fill Port User service includes the additional primitives to support this
type of fill.

3-6

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

. PortUser : (Port) Key : (Manager)

1. FILL_PORT_CONFIGURE |

1.1. FILL_PORT_SIGNAL_CONNECT J

2. User Connects Device 1

3. FILL_PORT_ENABLE

3.1. FILL_PORT_SIGNAL_LOAD

4. FILL_PORT_LOAD

4.1.FILL_PORT_SIGNAL_ASSIGN_ID

|-J\ 5. KEY_STORE -

6. User Disconnects Device

7. FILL_PORT_DISABLE

Figure 3-5. Sequence Diagram: DS-102 Fill using Port and Port User Services
1. ThePort User invokesthe FILL_PORT_CONFIGURE primitive which configures
the Fill Port for DS-102.

1.1 TheFill Portinvokesthe FILL_PORT_SIGNAL_CONNECT primitive on the Port
User to notify the user to connect the fill device.

2. Theuser connects the fill deviceto the Fill Port.

The Port User enables the Fill Port by invoking the FILL_PORT_ENABLE primitive
on the Port.

3.1 TheFill Port invokesthe FILL_PORT_SIGNAL_LOAD primitive on the Fill Port
User to notify the user to begin the loading from the fill device.

4. TheFill Port User invokes the FILL_PORT_LOAD primitive to start the load through
the fill port.

3-7

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.1 TheFill Port invokesthe FILL_PORT_ASSIGN_ID primitive on the Fill Port User to
notify him to assign an ID to the fill element, in this case akey.

5. TheFill Port User invokes the STORE_KEY primitive on the Key Management
Service with the name ID the user has assigned.

The user disconnects the fill device from the Fill Port.
The Port User invokes the FILL_PORT_DISABLE primitive on the Fill Port.

3.3.2 BusService.

The Bus Service allows the Service User to fill the radio from afile resident on an SCA
compliant file system. Figure 3-6 illustrates the user of the bus service invoking the
FILL_BUS LOAD primitive to accomplish the fill. The file name and its location are input as
part of the primitive.

Bus Service : Bus
User

. 1. FILL_BUS_LOAD

—

Figure 3-6. Sequence Diagram: Filling the Radio from a File using the Bus Service

3.3.3 Management Service.

The Fill Management Service is not implemented directly. This service provides a set of
primitives that are common across a set of management services. The Fill Management Service
isinherited, specialized and extended by other services. It isin these other services where the
implementation will reside.

Figure 3-7 illustrates a Service User invoking the FILL _ZEROIZE primitive of the Fill
Management Service. The FILL_ZEROIZE primitive zeroizes a single el ement of fill
information. The type of fill information depends on the inheriting service.

3-8

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Fill Management : (Manager)
Service User

. 1. FILL_ZEROIZE .

1]

Figure 3-7. Sequence Diagram: Zeroizing an Element using the Management Service

Figure 3-8 illustrates a Service User invoking the FILL_ZEROIZE_ALL primitive of the Fill
Management Service. The FILL_ZEROIZE_ALL primitive zeroizes al elements of fill
information with in aservice. The type of fill information depends on the inheriting service.

Fill Management : (Manager)
Service User

. 1. FILL_ZEROIZE_ALL .

1]

Figure 3-8. Sequence Diagram: Zeroizing all Elements using the Management Service

Figure 3-9 illustrates a Service User invoking the FILL_GET_IDS primitive of the Fill
Management Service. The FILL_GET _IDS primitive gets the identifiers of al the elements of
fill information with in a service. The type of fill information depends on the inheriting service.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Fill Management : (Manager)
Service User

. 1. FILL_GET_IDS .

1]

Figure 3-9. Sequence Diagram: Getting the Identifiers of all Elements using the
Management Service

Figure 3-10 illustrates a Service User invoking the FILL_EXPIRY primitive of the Fill
Management Service. The FILL_EXPIRY primitive gets the date and time of expiration for a
single element and returns them to the Service User.

Fill Management Service : (Manager)
User
. 1. FILL_EXPIRY .

{7

Figure 3-10. Sequence Diagram: Getting Expiration Info using the Fill Management
Service

34 ALGORITHM.

Algorithms encompass both encryption and classified TRANSEC agorithms. Algorithms require
only one service, a management service. The Crypto Control Service and TRANSEC Control
Service instantiate traffic and key stream generation channels with the algorithms managed by
the algorithm management service. The logical separation of the service that manages
algorithms and the services that use algorithms imposes no such separation in the
implementation.

3.4.1 Management Service

The Algorithm Management Service is a speciaization of the Fill Management Service with no
additional primitives. The ALG_ZEROIZE, ALG_ZEROIZE _ALL, ALG _GET_IDS and
ALG_EXPIRY primitives have the same behavior as the corresponding FILL _ZEROIZE,

FILL ZEROIZE ALL, FILL_GET_IDSand FILL_EXPIRY primitives where the elements are
algorithms.

3-10

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

3.5 CERTIFICATE.

The Integrity and Authentication Service uses certificates for generating and verifying Digital
Signatures. In addition they may be used for key exchanges such as Firefly. Certificates require
only one service, a management service.

3.5.1 Management Service.

The Certificate Management Service is a speciaization of the Fill Management Service with one
additional primitive. The CERT_ZEROIZE, CERT_ZEROIZE_ALL, CERT_GET_IDSand
CERT_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDSand FILL_EXPIRY primitives where the elements are
certificates.

3.6 CRYPTO.

Cryptographic (COMSEC) functionality is encompassed in the Crypto Control and
Encrypt/Decrypt services.

3.6.1 Control Service.

The Crypto Control Service covers channel creation, destruction, starting, stopping, resetting and
registration for crypto alarm notification.

Figure 3-11 illustrates a Service User invoking the CRYPT_CREATE_CHAN primitive of the
Crypto Control Service. The CRYPT_CREATE_CHAN causes the Crypto Control Service to
allocate internal resources and create a crypto channel. The channel type, algorithm, key(s),
mode(s) and properties (e.g. straps) are specified as part of the primitive. In addition a certificate
may be specified for establishment of a security association such asin a Firefly exchange. The
CRYPT_CREATE_CHAN primitive returns an opague channel identifier to the Service User.

Crypto Control : Controller
Service User

. 1. CRYPT_CREATE_CHAN .

1]

Figure 3-11. Sequence Diagram: Creating a Channel using the Crypto Control Service

Figure 3-12 illustrates a Service User invoking the CRYPT_DESTROY _CHAN primitive of the
Crypto Control Service. The CRYPT_DESTROY _CHAN primitive destroys a channel created
by the CRYPT_CREATE_CHAN primitive and al cryptographic resources allocated to the
channel are released.

3-11

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Crypto Control . Controller
Service User

. 1. CRYPT_DESTROY_CHAN .

O

Figure 3-12. Sequence Diagram: Destroying a Channel using the Crypto Control Service

Figure 3-13 illustrates a Service User invoking the CRYPT_GET_CHAN_CONFIG primitive of
the Crypto Control Service. The CRYPT_GET_CHAN_CONFIG primitive returns the
configuration information used to create a channel with the CRYPT_GET_CHAN_CONFIG
primitive.

Crypto Control . Controller
Service User

. 1. CRYPT_GET_CHAN_CONFIG .

1]

Figure 3-13. Sequence Diagram: Getting the Configuration of a Crypto Channel using the
Crypto Control Service

Figure 3-14 illustrates a Service User invoking the CRYPT_START_CHAN primitive of the
Crypto Control Service. The CRYPT_ START_CHAN primitive is used to start a crypto
channel or an individual mode of a crypto channel such as a Firefly exchange.

3-12

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Crypto Control . Controller
Service User

| 1. CRYPT_START_CHAN |

O

Figure 3-14. Sequence Diagram: Starting a Crypto Channel using the Crypto Control
Service.

Figure 3-15 illustrates a Service User invoking the CRYPT_STOP_CHAN primitive of the
Crypto Control Service. The CRYPT_ STOP_CHAN primitive is used to stop a crypto channel
or an individual mode of a crypto channel such as a Firefly exchange.

Crypto Control . Controller
Service User

. 1. CRYPT_STOP_CHAN .

1]

Figure 3-15. Sequence Diagram: Stopping a Crypto Channel using the Crypto Control
Service

Figure 3-16 illustrates a Service User invoking the CRYPT_RESET_CHAN primitive of the
Crypto Control Service. The CRYPT_RESET _CHAN primitive is used to reset a crypto
channel.

3-13

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Crypto Control . Controller
Service User

. 1. CRYPT_RESET_CHAN .

O

Figure 3-16. Sequence Diagram: Resetting a Crypto Channel using the Crypto Control
Service

Figure 3-17 illustrates a Service User invoking the CRY PT_RESET primitive of the Crypto
Control Service. The CRYPT_RESET primitive is used to reset an entire cryptographic
subsystem.

Crypto Control : Controller
Service User

. 1. CRYPT_RESET

1]

Figure 3-17. Sequence Diagram: Resetting the Cryptographic Subsystem using the Crypto
Control Service

3.6.2 Encrypt/Decrypt Service.

The Encrypt/Decrypt services provide for encryption and decryption of data using a given
channel created by the Crypto Control Service. The Encrypt/Decrypt primitives can be
categorized in Table 3-2.

3-14

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Table 3-2. Encrypt/Decrypt Primitive Cross-reference Table

SERVICE IMPLEMENTATION TYPE
CHANNEL MULTIPLE CHANNELS PER SINGLE CHANNEL PER

TYPE OBJECT OBJECT

SingleSided | CRYPT_ENCRYPT_WITH_ID, CRYPT_ENCRYPT,
CRYPT_DECRYPT _WITH_ID CRYPT_DECRYPT

(Red-Red, - - - -
Black-Black)
Two Sided CRYPT_TRANSFORM_WITH_ID | CRYPT_TRANSFROM
(Red-Black,
Black-Red)

The column |abels denote the implementation type of the Encrypt/Decrypt Service. Multiple
Channels per Object indicates an interface where multiple clients connect to the same server and
are multiplexed by channel identifier. Single Channel per Object indicates that each channel has
asingle client connected to a single server and the channel identifier isimplicit. The row labels
denote the type of channel created. A single sided channel provides encrypt/decrypt services that
return the results back to the Service User (e.g. black side DAMA order wire). For atwo-sided
channel, the result of the encrypt/decrypt is pushed out of the opposite side of the crypto
boundary (e.g. normal datatraffic). The Encrypt/Decrypt service provides service primitives to
support these types of implementations and channels.

Figure 3-18 illustrates a Service User invoking the CRYPT_ENCRY PT primitive of the
Encrypt/Decrypt Service. The CRYPT_ENCRYPT primitive is used to encrypt data and return
the data to the Service User. The channel identifier is not passed in the primitive, asit isimplicit
in the instantiation of the service.

Encrypt Decrypt -
Service User SingleChannelSingleSided

. 1. CRYPT_ENCRYPT .

O

Figure 3-18. Sequence Diagram: Same Side Encryption using the Encrypt/Decrypt Service

Figure 3-19 illustrates a Service User invoking the CRYPT_DECRY PT primitive of the
Encrypt/Decrypt Service. The CRYPT_DECRYPT primitiveis used to encrypt data and return

3-15

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
the data to the Service User. The channel identifier is not passed in the primitive, asit isimplicit
in the instantiation of the service.

Encrypt Decrypt o
Service User SingleChannelSingleSided

1. CRYPT_DECRYPT

1

Figure 3-19. Sequence Diagram: Same Side Decryption using the Encrypt Decrypt Service

Figure 3-20 illustrates a Service User invoking the CRYPT_ENCRYPT_WITH_ID primitive of
the Encrypt/Decrypt Service. The CRYPT_ENCRYPT_WITH_ID primitive is used to encrypt
data and return the data to the Service User. The channdl identifier is passed in the primitive.

Encrypt Decrypt : MultiChannelSingleSided
Service User

. 1. CRYPT_ENCRYPT_WITH_ID .

O

Figure 3-20. Same Side Encryption with Channel Identifier using the Encrypt/Decrypt
Service

Figure 3-21 illustrates a Service User invoking the CRYPT_DECRYPT_WITH_ID primitive of
the Encrypt/Decrypt Service. The CRYPT_DECRY PT_WITH_ID primitive is used to encrypt
data and return the data to the Service User. The channel identifier is passed in the primitive.

3-16

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Encrypt Decrypt . MultiChannelSingleSided
Service User

. 1. CRYPT_DECRYPT_WITH_ID .

O

Figure 3-21. Same Side Decryption with Channel Identifier using the Encrypt/Decrypt
Service

Figure 3-22 illustrates a Service User invoking the CRYPT_TRANSFORM primitive of the
Encrypt/Decrypt Service. The CRYPT_TRANSFORM primitive is used to encrypt/decrypt data.
The results of the encryption/decryption appear on the opposite side of the red/black boundary.
Header information to bypass the encryption/decryption is provided in the primitive along with
the data. The content and size of the header is waveform specific. A corresponding Bypass
Policy for the waveform will describe what in the header can be bypassed. The channel
identifier is not passed in the primitive, asit isimplicit in the instantiation of the service.

Encrypt Decrypt : SingleChannel
Service User

. 1. CRYPT_TRANSFORM .

1

Figure 3-22. Sequence Diagram: Encryption/Decryption using the Encrypt/ Decrypt
Service

Figure 3-23 illustrates a Service User invoking the CRYPT_TRANSFORM_WITH_ID primitive
of the Encrypt/Decrypt Service. The CRYPT_TRANSFORM_WITH_ID primitive is used to
encrypt/decrypt data. Thisisamulti-channel service. Multiple channels are multiplexed via the
channel identifier created by the CRYPT_CREATE_CHAN primitive. This service allows one
component to handle multiple instantiated waveform channels. The results of the
encryption/decryption appear on the opposite side of the red/black boundary. Header information
to bypass the encryption/decryption is provided in the primitive along with the data. The content
and size of the header is waveform specific. A corresponding Bypass Policy for the waveform
will describe what in the header can be bypassed. The channel identifier is passed in the
primitive.

3-17

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Encrypt Decrypt . MultiChannel
Service User

. 1. CRYPT_TRANSFORM_WITH_ID .

O

Figure 3-23. Sequence Diagram: Encryption/Decryption with Channel Identifier using the
Encrypt/Decrypt Service

3.7 KEY.

Keys require only one service, a management service. Keysin this context are persistent keys,
which require storage and are not to be confused with session keys that are generated in a Firefly
exchange for example. The Crypto Control Service instantiates traffic channels with the keys
managed by the key management service. The logical separation of the service that manages
keys and the services that use keys imposes no such separation in the implementation.

3.7.1 Management Service.

The Key Management Service is a specialization of the Fill Management Service with three
additional primitives. The KEY_ZEROIZE, KEY_ZEROIZE_ALL, KEY_GET_IDS and
KEY_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE ALL, FILL_GET _IDSand FILL_EXPIRY primitives where the elements are
keys.

Figure 3-24 illustrates a Service User invoking the KEY _STORE primitive of the Key
Management Service. The KEY_STORE primitive instructs the Key Management service
provider to store the current DS-102 fill information as a Key with the name provided in the
primitive. Refer to Figure 3-5, which illustrates a complete DS-102 fill sequence using Security
Service Primitives.

3-18

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Key Management : (Manager)
Service User

. 1. KEY_STORE .

1

Figure 3-24. Sequence Diagram: Storing a DS-102 Key using the Key Management
Service.

Figure 3-25 illustrates a Service User invoking the KEY_UPDATE primitive of the Key
Management Service. The KEY_UPDATE primitive instructs the Key Management Service
provider to update a specific key that isidentified as part of the primitive. The result is akey
stored under the same identifier but with an update count incremented by one. Functionally the
key isanew key.

Key Management : (Manager)
Service User

. 1. KEY_UPDATE .

1

Figure 3-25. Sequence Diagram: Updating a Key using the Key Management Service

Figure 3-26 illustrates a Service User invoking the KEY _GET_UPDATE_COUNT primitive of
the Key Management Service. The KEY_GET_UPDATE_COUNT primitive instructs the Key
Management Service provider to retrieve the update count of a specific key that is identified as
part of the primitive. The count is returned to the user as part of the primitive. The update count
is used when coordinating communications between peers to ensure that the key the peers intend
to use has the same update count in each radio.

3-19

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
Key Management : (Manager)
Service User

. 1. KEY_GET_UPDATE_COUNT .

T

Figure 3-26. Sequence Diagram: Getting the Update Count of a Key using the Key
Management Service

3.8 TRANSEC.

TRANSEC requires three services, a management service for managing stored TRANSEC
information, a control service for creating and destroying key stream generation channels and a
key stream provider service for providing the actual key stream. TRANSEC in this context is
persistent information used to generate TRANSEC cover. The Key Stream provider service
provides the actual key stream datato a waveform. The logical separation of the TRANSEC
management service that manages TRANSEC information and the services that use TRANSEC
information imposes no such separation in the implementation.

3.8.1 Control Service.

The TRANSEC Control Service instantiates and destroys classified key stream generation
channels with the TRANSEC information managed by the TRANSEC management service.

Figure 3-27 illustrates a Service User invoking the TRAN_CREATE_CHAN primitive of the
TRANSEC Control Service. The TRAN_CREATE_CHAN primitive causes the Control Service
to create a classified key stream generation channel. The TRANSEC algorithm, key and seed are
specified as part of the primitive. An opaque channel identifier is returned to the Service User.

3-20

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Transec Control : (Controller)

Service User

. 1. TRAN_CREATE_CHAN .

1

Figure 3-27. Sequence Diagram: Creating a TRANSEC Channel (Key Stream) using the
TRANSEC Control Service

Figure 3-28 illustrates a Service User invoking the TRAN_GET_CHAN_CONFIG primitive of
the TRANSEC Control Service. The TRAN_GET_CHAN_CONFIG primitive causes the
Control Service to return the configuration of a key stream generation channel. The TRANSEC
channel identifier isinput as part of the primitive. The configuration information that was used
to create the channel is returned to the Service User.

Transec Control : (Controller)

Service User

1. TRAN_GET_CHAN_CONFIG

1

Figure 3-28. Sequence Diagram: Getting a TRANSEC Channel Configuration using the
TRANSEC Control Service

Figure 3-29 illustrates a Service User invoking the TRAN_DESTROY _CHAN primitive of the
TRANSEC Control Service. The TRAN_DESTROY_CHAN primitive causes the Control
Service to destroy a key stream generation channel. The TRANSEC channel identifier is input
as part of the primitive.

3-21

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Transec Control : (Controller)

Service User

. 1. TRAN_DESTROY_CHAN .

1

Figure 3-29. Sequence Diagram: Destroying a TRANSEC Channel using the TRANSEC
Control Service

3.8.2 Key Stream Service.

The Key Stream Service provides generated classified key stream data from a channel
instantiated by the TRANSEC Control Service.

Figure 3-30 illustrates a Service User invoking the TRAN_GEN_KEY_STREAM primitive of
the TRANSEC Key Stream Service. The TRAN_GEN_KEY_STREAM generates a classified
key stream based on the algorithm and key provided to the TRAN_CREATE_CHAN primitive.
A new seed is provided as input to this primitive. The resulting key stream is returned to the
Service User as part of the primitive. The channel identifier isinput as part of the primitive
(multi-channel service).

Transec Provider : (Provider)
Service User

. 1. TRAN_GEN_KEY_STREAM .

1

Figure 3-30. Sequence Diagram: Generating a Key Stream with a New Seed using the
TRANSEC Key Stream Service.

Figure 3-31 illustrates a Service User invoking the TRAN_GEN_NEXT_KEY_STREAM
primitive of the TRANSEC Key Stream Service. The TRAN_GEN_KEY_STREAM isidentical
to the TRAN_GEN_KEY_STREAM primitive except that a new seed is not provided and the
key stream is generated based on the existing state of the channel.

3-22

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Transec Provider : (Provider)
Service User

. 1. TRAN_GEN_NEXT_KEY_STREAM .

T

Figure 3-31. Sequence Diagram: Generating a Key Stream without a New Seed using the
TRANSEC Key Stream Service.

3.8.3 Management Service.

The TRANSEC Management Service is a specialization of the Fill Management Service with
two additional primitives. The TRAN_ZEROIZE, TRAN _ZEROIZE_ALL, TRAN _GET_IDS
and TRAN_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE ALL, FILL_GET_IDSand FILL_EXPIRY primitives where the elements are
TRANSEC information.

Figure 3-32 illustrates a Service User invoking the TRAN_STORE primitive of the TRANSEC
Management Service. The TRAN_STORE primitive instructs the TRANSEC management
service provider to store the current DS-102 fill information as TRANSEC information with the
name provided in the primitive.

Transec Management : (Manager)
Service User

. 1. TRAN_STORE

1

Figure 3-32. Sequence Diagram: Storing DS-102 TRANSEC Information using the
TRANSEC Management Service

Figure 3-33 illustrates a Service User invoking the TRAN_GET_FILL primitive of the
TRANSEC Management Service. The TRAN_GET_FILL primitive instructs the TRANSEC
Management service provider to return the unclassified fill information associated with the
identifier provided in the primitive to the service user. Refer to Figure 3-5, which illustrates a
complete DS-102 fill sequence using Security Service Primitives.

3-23

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Transec Management . 1Manager)
Service User

1. TRAN_GET_FILL .

1

Figure 3-33. Sequence Diagram: Getting Unclassified TRANSEC Fill Info using the
TRANSEC Management Service

3.9 POLICY.

Policies in the context of the JTRS Security Service API are information used to control the
behavior of the JTRS Security Enforcement mechanisms. The number and content of the
policiesin any given JTRS platform will vary according to the platform configuration and the
number and type of waveform applications loaded on it. Policies are used to parameterize crypto
bypass behavior, access control to objects and files, and audit behavior. Figure 3-34 illustrates
how bypass policies are used. The Control Bypass Guard enforces System and Waveform
configuration and control bypass policies that are accessed from a Policy store. The Bypass
policies contain information that the guard uses in its enforcement mechanism to either alow or
disalow information to flow from red to black. The Header Bypass Guard is similar except that
it performs its enforcement function at real time data rates and on header information that is
associated with packets of data.

3-24

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
CRYPTOGRAPHIC
SUBSYSTEM

Waveform

Header and :
I

Encrypted Data i Waveform
! Crypto Data
< ! Device |[@——
! Waveform
| Header and
E Waveform Data
! Header Header
: Bypass |«
! Guard
| A
i
|
! Control
< T Bypass |«
| Guard
System ! System
Control ! Control
|
[}
i Policy
St
BLACK | ore RED

I
|
|

Figure 3-34. Security Policies and Bypass

3.9.1 Management Service.

The Policy Management Service is a specialization of the Fill Management Service with one
additional primitive. The POL_ZEROIZE, POL_ZEROIZE_ALL, POL_GET_IDSand
POL_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE ALL, FILL_GET_IDSand FILL_EXPIRY primitives where the elements are
policies.

Figure 3-35 illustrates a Service User invoking the POL_GET_POLICY primitive of the Policy
Management Service. The POL_GET_POLICY primitive instructs the Policy Management
Service provider to return the security policy associated with the identifier provided in the
primitive to the service user. The Policy Management Service provider returns the policy in the
same primitive.

3-25

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Policy Management : (Manager)
Service User

. 1. POL_GET_POLICY .

-

Figure 3-35. Sequence Diagram: Getting a Security Policy using the Policy Management
Service.

3.10 INTEGRITY AND AUTHENTICATION.

Integrity and Authentication encompasses verification of the identity of the source of information
(authentication) and verification that the information has not been changed (integrity).
Certificates are used to generate the Integrity and Authentication context.

3.10.1 Control and Digital Signatures Provider Services.

Figure 3-36 illustrates the sequence of primitivesto digitaly sign afile.

Security Service : Controller . (Provider)
User

. 1.1A_CREATE_CONTEXT .

2.1A_SIGN_FILE 1

3.1A_DESTROY_CONTEXT

1

s

Figure 3-36. Sequence Diagram: Signing a File

1. The Service User invokesthe IA_CREATE_CONTEXT primitive of the Control
Service. Theidentifier of the certificate to use to create the context is supplied as part
of the primitive. The certificate identifies the hashing and signature algorithms to be
used.

2. The Service User invokesthe IA_SIGN_FILE primitive of the Digital Signatures
Provider Service to sign afile.

3-26

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
3. The Service User invokesthe IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

Figure 3-37 illustrates the sequence of primitives to digitally verify afile.

Security Service . Controller : (Provider)
User

. 1.1A_CREATE_CONTEXT .

2. IA_VERIFY_FILE/U

3. IA_DESTROY_CONTEXT

1

—
:
[l
[}
1
I
1
1
[}
1
I

Figure 3-37. Sequence Diagram: Verifying a File

1. The Service User invokesthe IA_CREATE_CONTEXT primitive of the Control
Service. Theidentifier of the certificate to use to create the context is supplied as part
of the primitive.

2. The Service User invokesthe IA_VERIFY_FILE primitive of the Digital Signatures
Provider Service to verify adigitally signed file. The result of the verification is
returned in the primitive.

3. The Service User invokesthe IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

Figure 3-38 illustrates the sequence of primitives to generate and sign a hash.

3-27

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
Security Service : Controller . (Provider)
User

| 1.1A_CREATE_CONTEXT |
1 1

2.1A_HASH /U

3.1A_SIGN_HASH |

4.1A_DESTROY_CONTEXT

1

Figure 3-38. Sequence Diagram: Generating and Signing a Hash.

1. The Service User invokesthe IA_CREATE_CONTEXT primitive of the Control
Service. Theidentifier of the certificate to use to create the context is supplied as part
of the primitive. Aninternal hash isinitialized as part of the context.

2. The Service User invokesthe IA_HASH primitive of the Digital Signatures Provider
Service to update the internal hash from data supplied with the primitive. This
primitive may executed as many times in succession as required to generate the
required hash (e.g. ablock of data must be broken up into 2 or more pieces for
reasons of time or size). Once IA_HASH isinvoked for a context it isinvalid to
invokethe |lA_SIGN_FILE or IA_VERIFY_FILE primitives, as they would
invalidate the hash.

3. The Service User invokes the IA_SIGN_HASH primitive to sign the generated hash.
The resultant digital signature is returned in the primitive.

4. The Service User invokesthe IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

Figure 3-38 illustrates the sequence of primitives to verify adigitally signed block of data.

3-28

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Security Service : Controller : Provider
User

| 1.1A_CREATE_CONTEXT |
1 1

2.1A_HASH /U

3.1A_VERIFY_HASH |

4.1A_DESTROY_CONTEXT

1

.___________i

Figure 3-39. Sequence Diagram: Verifying a Digital Signature

1. The Service User invokes the IA_CREATE_CONTEXT primitive of the Control
Service. The identifier of the certificate to use to create the context is supplied as part
of the primitive. Aninternal hash isinitialized as part of the context.

2. The Service User invokes the IA_HASH primitive of the Digital Signatures Provider
Service to update the interna hash from data supplied with the primitive. This
primitive may executed as many times in succession as required to generate the
required hash. Once IA_HASH is invoked for a context it is invalid to invoke the
IA_SIGN_FILE or IA_VERIFY_FILE primitives, as they will invalidate the hash.

3. The Service User invokes the IA_VERIFY_HASH primitive to verify the digital
signature supplied with the data matches the generated hash. The resultant digital
signature is returned in the primitive.

4. The Service User invokes the IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

3.11 ALARM.

The Security Service divides alarms into two components, an audit record and an alarm
indicator. The audit record is modeled after the ITU X.736 standard. The CF::Logger is used to
log the audit record.

Figure 3-40 illustrates a Security Service Provider issuing the ALARM_SIGNAL primitive.
This primitive signals the Security Service User that a crypto alarm has occurred.

3-29

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

3.11.1 User.

Figure 3-40 illustrates a Security Service Provider issuing the ALARM_SIGNAL primitive.
This primitive signals the Security Service User that a crypto alarm has occurred.

.User Security Service

Provider

1. ALARM_SIGNAL .

]

Figure 3-40. Sequence Diagram: Signaling a Crypto Alarm

312 TIME.

Some Security Service implementations require management of time. The Security Service AP
defines a Time Management Service for this purpose.

3.12.1 Management Service.

Figure 3-41 illustrates a Service User invoking the TIME_SET_TIME primitive of the Time
Management Service. TIME_SET_TIME primitive is used to set the time of day in for the
Security Service.

Time Management : (Manager)
Service User

. 1. TIME_SET_TIME

]

Figure 3-41. Sequence Diagram: Setting Time using the Time M anagement Service

Figure 3-42 illustrates a Service User invoking the TIME_GET_TIME primitive of the Time
Management Service. TIME_GET_TIME primitive is used to request the time of day maintained
within the Security Service. The time of day is returned in the primitive.

3-30

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Time Management : (Manager)
Service User

. 1. TIME_GET_TIME

]

Figure 3-42. Sequence Diagram: Getting Time using the Time M anagement Service

Figure 3-43 illustrates a Service User invoking the TIME_SET_DATE primitive of the Time
Management Service. TIME_SET_DATE primitive is used to set the date in the Security
Service.

Time Management . (Managerl
Service User

1. TIME_SET_DATE

{7

Figure 3-43. Sequence Diagram: Setting Date using the Time M anagement Service
Figure 3-43 illustrates a Service User invoking the TIME_GET_DATE primitive of the Time

Management Service. TIME_GET_DATE primitive is used to get the date maintained in the
Security Service.

3-31

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
Time Management : (Manager)
Service User

. 1. TIME_GET_DATE

]

Figure 3-44. Sequence Diagram: Getting Date using the Time Management Service

3.13 GPS.

3.13.1 Management.

The GPS Management Service is a speciadization of the TRANSEC Management Service with
no additional primitives. The GPS_ZEROIZE, GPS ZEROIZE _ALL, GPS GET _IDS,

GPS _EXPIRY, GPS_STORE and GPS_GET_FILL primitives have the same behavior as the
corresponding TRAN_ZEROIZE, TRAN_ZEROIZE_ALL, TRAN_GET_IDS TRAN_EXPIRY,
TRAN_STORE and TRAN_GET_FILL primitives.

3-32

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4 SERVICE PRIMITIVES.

The entirety of the JTRS Security API set is defined within a CORBA module called
JTRSSecurity. There are common types that are used by multiple modules within the
JTRSSecurity module. They are shown in Figure 4-1.

<<CORBATypedef>> <<CORBATypedef>>
ChannellDType IDSequenceType
<<uses>>
<<CORBAStruct>> <<CORBATypedef>>
TODType IDType
~seconds : unsigned long

~snanoseconds : unsigned long

<<CORBAStruct>>
DateType

syear : YearType
»day : DayType

N <<uses>>
\,

<<usegx> A
<<CORBATypedef>> <<CORBATypedef>>
YearType DayType

Figure4-1. ClassDiagram: JTRS Security Common Types

The service primitives, as shown in Table 3-1 are broken up into service groups. Each service
group trandates into a CORBA module within the JTRSSecurity module and each service within
the group trandates into an interface. This organization provides scope for names. For example
the full scoped name of the Key Management Service is JTRSSecurity::Key::Manager.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

41 SECURITY.
There is a management service that exists at the JTRSSecurity level and is shown in Figure 4-2.

<<Interface>>
Manager

*zeroizeAll() : void

Figure4-2. ClassDiagram: JTRS Security Management Service

411 ZEROIZE_ALL.

The FILL_ZEROIZE_ALL primitive deletes al managed elements within the entirety of the
Security Service. These elements are algorithms, keys, TRANSEC certificates, Policies and
GPS.

4111 Synopsis.
void zeroizeAll () raises (ZeroizeFailed);

4.1.1.2 Parameters.
N/A.

4113 State.

This primitive is valid in any state.
4114 New State.

The resulting state is unchanged.

4.1.1.5 Response.
N/A.

4.1.1.6 Originator.

This primitive is initiated by the service user.
4.1.1.7 ErrorgExceptions.
ZeroizeFailed

The zeroize failed for an indeterminate reason.

4-2

MSRC-5000SEC

Security APl Service Definition
rev. 1.0

42 FILL.
The Fill services are shown in Figure 4-3. These services support filling a cryptographic

subsystem through a Fill Port (Port, PortUser), filling through file input (Bus) and management
of store fill information (Manager).

<<Interface>>
PortUser

<<Interface>>
Port

MsignalConnectDevice(instruction : in string) : void
MsignalLoad(instruction : in string) : void
MsignalAssignlD(instruction : in string) : void

*configure(type : in PortType) : void
“enable() : void
“disable() : void

®oad() : LoadResultType
/” \\‘ <<Uses>> ‘\\\ <<uses>>
<<usels>> \ \x.\s
l N <<CORBATypedef>> <<CORBATypedef>>
<<CORBAENnum>> <<CORBAEnum>> IDType IDSequenceType
PortType LoadResultType (from JTRSSecurity) (from JTRSSecurity)
APT_DS101 ALR_COMPLETED A =7
APT_DS102 ALR_DEVICE_ERROR /
APT_RS232 ALR_CORRUPTED_LOAD | <cysds>> <<uses>>

1

1

/
I d
‘l
<<Interface>>
Manager

Mzeroize(ID : in IDType, override : in boolean) : void

<<Interface>> X .
MzeroizeAll() : void

F(l}l((raosr:sct;r;w *getIDs(IDs : out IDSequenceType) : void
Mexpiry(ID : in IDType, date : out Date Type, time : out TODType) : boolean

<<Interface>>
Bus

*oad(fileSys : in CF::FileSystem, fileName : in string) : void

Figure4-3. ClassDiagram: Fill Services

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

421 FILL_PORT_CONFIGURE.
This primitive configures the Fill Port for DS-101, DS-102 or RS-232 operation.

4.2.1.1 Synopsis.

void configure (
in PortType type
);

4.2.1.2 Parameters.

type
Indicates how to configure the Fill Port
PT_DS101 Configure the Fill Port for DS101 operation
PT_DS102 Configure the Fill Port DS102 operation
PT_RS232 Configure the Fill Port RS-232 operation

4213 State.
This primitive is valid in the DISABLED state.

4.2.1.4 New State.
The state remains unchanged.

4215 Response.
The FILL_PORT_SIGNAL_CONNECT primitive is invoked on the service user.

4.2.1.6 Originator.

This primitive is initiated by the service user.
4.2.1.7 Errors/Exceptions.

N/A.

4-4

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

422 FILL_PORT_ENABLE.

This primitive enables the Fill Port. The port will be enabled with the configuration set by the
FILL_PORT_CONFIGURE primitive.

4.2.2.1 Synopsis.
void enable ();

4222 Parameters.
N/A.

4.2.2.3 State.

This primitive is valid in the DISABLED state.

4.2.2.4 New State.

The new state is ENABLED.

4.2.2.5 Response.

The FILL_PORT_SIGNAL_LOAD primitive isinvoked on the service user.
4.2.2.6 Originator.

This primitive is initiated by the service user.

4.2.2.7 Errors/Exceptions.

N/A.

4-5

423 FILL_PORT_DISABLE.
This primitive disables the Fill Port.

4.2.3.1 Synopsis.
void disable ();

4.2.3.2 Parameters.
N/A.

4.2.3.3 State.
This primitive is valid in the ENABLED state.

4.2.3.4 New State.
The resulting state is DISABLED.

4.2.35 Response.
N/A.

4.2.3.6 Originator.

This primitive is initiated by the service user.
4.2.3.7 Errors/Exceptions.

N/A.

4-6

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

424 FILL_PORT_LOAD.

This primitive initiates the load of fill information from the fill device. The primitive returns to
the caller when the load terminates.

4241 Synopsis.
L oadResultType load ();

4.2.4.2 Parameters.

N/A.

4243 State.

This primitive is valid in the ENABLED state.

4244 New State.

A transition to the LOAD_IN_PROGRESS state is made upon entering this primitive. Upon
termination areturn to the ENABLED state is made.

4245 Response.

N/A.

4.2.4.6 Originator.

This primitive is initiated by the service user.

4.2.4.7 Errors/Exceptions.
The primitive returns a status:

LR _SUCCESS The load completed successfully.
LR _DEVICE_ERROR A device error occurred. The fill device may not be connected or
may be faulty.

LR CORRUPTED _LOAD Theloaded datais corrupt.

4-7

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

425 FILL_PORT_SIGNAL_CONNECT.
This primitive signals the service user to connect the Fill Device to the Fill Port.

4.25.1 Synopsis.
void signalConnectDevice (

in string instruction
);
4.2.5.2 Parameters.
string

Provides any additional information to the user about connecting the device.

4253 State.
This primitive is issued in the DISABLED state.

4254 New State.
The state remains unchanged.

4255 Response.
N/A.

4.25.6 Originator.

This primitive isinitiated by the service provider.
4.25.7 Errors/Exceptions.

N/A.

4-8

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

426 FILL_PORT_SIGNAL_LOAD.

This primitive signals the Service User that the Fill Port is ready for the Service User to initiate
the load.

4.2.6.1 Synopsis.

void signalLoad (
in string instruction
);

4.2.6.2 Parameters.
instruction

A string which may contain additional instructions for initiating the load.

4.2.6.3 State.
This primitive is issued from the ENABLED state.

4.2.6.4 New State.
The state remains unchanged.

4.2.6.5 Response.
N/A.

4.2.6.6 Originator.
This primitive is initiated by the service provider.

4.2.6.7 Errors/Exceptions.
N/A.

4-9

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

42.7 FILL_PORT_SIGNAL_ASSIGN_ID.

This primitive signals the Service User that the appropriate Fill Manager (TRANSEC or KEY) is
ready for the Service User to initiate assign an ID to the fill information.

4.2.7.1 Synopsis.

void signalAssignid (
in string instruction
);

4.27.2 Parameters.
instruction

A string that may contain additional instructions for assigning an ID to the fill
information loaded viaa DS-102 fill device.

4.2.7.3 State.
This primitive isissued from the FILL_STATE_PENDING_STORE state.

4274 New State.
The state remains unchanged.

4.2.7.5 Response.
N/A.

4.2.7.6 Originator.

This primitive is initiated by the service provider.
4.2.7.7 ErrorgExceptions.

N/A.

4-10

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

428 FILL_BUS LOAD.

This primitive loads fill information that is stored in afile. The file may or may not be encrypted
but will be digitally signed. All keys and cryptographic algorithms will be encrypted and
digitally signed.

4.2.8.1 Synopsis.

void load (
in CF::FileSystem fileSys,
in string fileName
);
4.2.8.2 Parameters.
fileSys

Identifies the location of the file of fill information.
fileName
The name of thefile.
4.2.8.3 State.
This primitive may be issued in any state.
4.2.84 New State.
The state remains unchanged.

4.2.8.5 Response.
N/A.

4.2.8.6 Originator.
This primitive is initiated by the service user.
4.2.8.7 ErrorgExceptions.

This primitive may raise the exceptions associated with the CF::FileSystem and CF::File. In
addition the following exception may be raised:

FileNotValid
Thefile is not a vdid fill file.

4-11

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

429 FILL_ZEROIZE.

This primitive deletes all instances of a single element from a security service as specified by the
ID.

4.29.1 Synopsis.

void zeroize (
in [dType id
inboolean override
) raises (Invalidid, ElementinUse, ZeroizeFailed);

4292 Parameters.
id

| dentifies the lement to delete
override

Causes the element to be deleted even though the element is in use by an instantiated
channel or context. If the element isin use, then al processing using the element must be
terminated.

4293 State.

The primitive is valid in any state.
4.29.4 New State.

The resulting state is unchanged.

4.2.9.5 Response.
N/A.

4.2.9.6 Originator.
This primitive isinitiated by the service user.
4.2.9.7 Errors/Exceptions
The following exceptions may be raised:
Invalidid
Theid is either malformed or the element does not exist.
ElementinUse

The element to be removed is currently in use by an instantiated channel or context. This
exception only israised if the override parameter is set to FALSE.

ZeroizeFailed

The zeroize failed for an indeterminate reason.

4-12

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.2.10 FILL_ZEROIZE_ALL.

The FILL_ZEROIZE_ALL primitive deletes all elements of a given type from a security service.
Any processing using the elements is terminated.

4.2.10.1 Synopsis.
void zeroizeAll () raises (ZeroizeFailed);

4.2.10.2 Parameters.

N/A.

4.2.10.3 State.

This primitive is valid in any state.
4.2.10.4 New State.

The resulting state is unchanged.

4.2.10.5 Response.
N/A.

4.2.10.6 Originator.
This primitive is initiated by the service user.
4.2.10.7 Errors/Exceptions.
ZeroizeFailed
The zeroize failed for an indeterminate reason.

4-13

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
4211 FILL_GET_IDS.
This primitive retrieves the identifiers of all the elements associated with the manager that are
resident in a security system (e.g. keys for Key::Manager)
4.2.11.1 Synopsis.

void getlds (
out ldSequenceType ids
);

4.2.11.2 Parameters.
ids

A sequence of identifiers of all the elements associated with the manager in the security
subsystem. The number of elementsisimplicit in the sequence.

4.2.11.3 State.

This primitive is valid in any state.

4.2.11.4 New State.

The resulting state is unchanged.

4.2.11.5 Response.

N/A.

4.2.11.6 Originator.

This primitive is initiated by the service user.
4.2.11.7 Errors/Exceptions.

N/A.

4-14

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.2.12 FILL_EXPIRY.

This primitive retrieves the expiration date and time for a given element associated with a
manager that is resident in a security system (e.g. Certificate for Certificate::Manager).

4.2.12.1 Synopsis.

boolean expiry (
in [dType id,
out DateType date,
out TODType time
) raises (Invalidid);

4.2.12.2 Parameters.
id

The ID of the element for which to retrieve the expiration time and date.
date
The expiration date of the element. See paragraph 4.11.3.2 for the structure of DateType.
time
The expiration time of the element. See paragraph 4.11.1.2 for the structure of
TODType.
4.2.12.3 State.
This primitive is valid in any state.
4.2.12.4 New State.
The resulting state is unchanged.

4.2.12.5 Response.
This primitive returns a bool ean:

FALSE The element does not expire.
TRUE The element expires at the time and date returned from the primitive.
4.2.12.6 Originator.
This primitive isinitiated by the service user.
4.2.12.7 ErrorgExceptions.
The following exception is raised:
Invalidid
Theid is either malformed or the element does not exist.

4-15

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

43 ALGORITHM.

The Algorithm Management Service is a specialization of the Fill Management Service as shown
in Figure 4-4. 1t is responsible for management of stored COMSEC and TRANSEC algorithms.

<<Interface>>
Manager

(from Fill)

<<inherits>>|

<<Interface>>
Manager

Figure 4-4. ClassDiagram: Algorithm Management Service

431 ALG_ZEROIZE.

This primitive deletes all instances of a single cryptographic algorithm from a security service as
specified by theid. See paragraph 4.2.9 for the semantics and behavior.

432 ALG_ZEROIZE ALL.

This primitive deletes cryptographic agorithms from a security service. See paragraph 4.2.10
for the semantics and behavior.

433 ALG_GET_IDS.

This primitive retrieves the identifiers of al the cryptographic algorithms resident in a security
service. See paragraph 4.2.11 for the semantics and behavior.

434 ALG_EXPIRY.

This primitive retrieves the expiration date and time for a given agorithm within a security
service. See paragraph 4.2.12 for the semantics and behavior.

4-16

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

44 CERTIFICATE.

The Certificate Management Service is a specialization of the Fill Management Service as shown
in Figure 4-4. 1t isresponsible for management of digital certificates which support the Integrity
and Authentication services.

<<Interface>>
Manager
(from Fill)

<<inherits>>|

<<Interface>>
Manager

Figure4-5. Class Diagram: Certificate Management Service

441 CERT_ZEROIZE.

This primitive deletes all instances of a single certificate from a security service as specified by
theid. Seeparagraph 4.2.9 for the semantics and behavior.

442 CERT_ZEROIZE_ALL.

This primitive deletes al certificates from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.4.3 CERT_GET_IDS.

This primitive retrieves the identifiers of all the certificates resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

444 CERT_EXPIRY.

This primitive retrieves the expiration date and time for a given certificate within a security
service. See paragraph 4.2.12 for the semantics and behavior.

4-17

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

45 CRYPTO.

Figure 4-6 shows the class diagram of the Crypto Control Service. This interface supports the
instantiation, tear down and basic mode control for a crypto channel.

<<Interface>>
Controller

“createChannel(configinfo : in ChannelConfigType) : ChannellDType
*destroyChannel(channel : in ChannellDType) : void

*getChannelConfig(channel : in ChannellDType, configinfo : out ChannelConfigType) : void
*startChannel(channel : in ChannellDType, mode : in string) : void

*stopChannel(channel : in ChannellDType, mode : in string) : void

*resetChannel(channel : in ChannellDType) : void

%resetCrypto() : void

N
s/ \
/ AN
/ N\,

<<lf§'é5>> <<Oses>>
<<CORBAStruct>> N
ChannelConfigType <<(C?:(P3RBA'|I'I)§3I¢_3def>>
. annellDType
Atype : ChannelType)
salgorithm : IDType (from JTRSSecurity)

»keys : IDSequenceType
»certificate : IDType

~modes : CF::StringSequence
»properties : CF::Properties

<;\u§es>>
A
<<CORBAEnum>>

ChannelType
#CT_SIMPLEX_RX
»CT_HALF_DUPLEX
»CT_FULL_DUPLEX
»CT_BLACK_SIDE
A~CT_RED_SIDE

Figure 4-6. ClassDiagram: Crypto Control Service
Figure 4-7 shows the Encrypt/Decrypt services. These services provide the ability to encrypt and

decrypt between the red and black sides of aradio. In addition red-red and black-black
encrypt/decrypt services are provided to support cases such as DAMA order wire.

4-18

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

<<CORBAEXxception>>||<<CORBAException>> || <<CORBAEXxception>> || <<CORBAEXxception>>

ChannellnAlarm DeviceError InvalidChannellD UnknownError
= 3 7 =
\\\ N <<uséd>> 7
<<USesS>>" <<uses>> 7 _<<uses>>
SN \ / /’/

N \ / -
~ -
~. N / -

<<Interface>>
MultiChannelSingleSided

*Encrypt(channel : in ChannellDType, data : inout CF::OctetSequence) : void
%Decrypt(channel : in ChannellDType, data : inout CF::OctetSequence) : void

<<uses>>

<<CORBATypedef>>
ChannellDType

(from JTRSSecurity)

<<uses>>

<<Interface>>
MultiChannel

*ransform(channel : in ChannellDType, bypass : in any, payload : in CF::OctetSequence) : void

<<Interface>>
SingleChannel

*sransform(bypass : in any, payload : in CF::OctetSequence) : void

<<Interface>>
SingleChannelSingleSided

MEncrypt(data : inout CF::OctetSequence) : void
MDecrypt(data : inout CF::OctetSequence) : void

<<uses>> -~ <<ugps>> T <<uses>>
<<CORBAEXxception>> <<CORBAException>> <<CORBAEXxception>>
ChannellnAlarm DeviceError UnknownError

Figure4-7. ClassDiagram: Encrypt/Decrypt Services

4-19

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

451 CRYPT_CREATE_CHAN.
This primitive creates a COM SEC channel within a cryptographic subsystem.

45.1.1 Synopsis.

ChannelldType createChannel (

in ChannelConfigType configlnfo
) raises (Assurancelevel, CertificateNotRequired, ChanTypeAlgorithmMismatch, DeviceError,
InvalidAlgorithmid, InvalidCertificateld, Invalidkeyld, InvalidM ode, InvalidPolicyld,
InvalidProperty, KeyAlgorithmMismatch, KeyExpired, NotCOM SECAIgorithm,
ResourcesUnavailable, UnknownError);

4512 Parameters.
configlnfo

The channel ConfigType has the following structure:

struct ChannelConfigType {
Channel Type type;
IdType algorithm,
|dSequenceType keys,
IdType bypassPolicy;
IdType certificate;
CF.:StringSequence modes,
CF::Properties properties;

type
|dentifies the type of crypto channel to create:
CT_SIMPLEX_RX,
Receive only operation.
CT_HALF DUPLEX,

The channel supports both transmit and receive but only one at atime (the
crypto will context switch between receive and transmit portions of
algorithm.)

CT_FULL_DUPLEX,

The channel is configured for simultaneous receive and transmit (e.g. not
context switching).

CT_BLACK_SIDE,

The channel is configured for black-black encrypt and decrypt (e.g.
DAMA order wire).

CT_RED _SIDE

4-20

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

The channel is configured for red-red encrypt and decrypt.
algorithm

| dentifies the crypto algorithm to use for the channel.
keys

Identifies the key(s) to use for the channel. Certain waveforms require the use of
multiple keys. A key identifier of "" indicates a session key must be generated.

bypassPolicy
Identifies the Bypass Policy to use for the channel. Thisis awaveform specific
bypass policy.

certificate

Only valid for instances where session keys are generated and not pulled from key
storage (e.g. Firefly exchange).

modes

The set of modes in which the algorithm will operate.
properties

The set of properties for the algorithm such as straps, seed, €tc.

4513 State
N/A.

4514 New State.
The state of the new channdl isIDLE.

4515 Response.

This primitive returns an opaque channel identifier of type ChannelldType
45.1.6 Originator.

This primitive is initiated by the service user.

45.1.7 Errors/Exceptions.

The following exceptions may be raised:

Assurancelevel

The crypto is not certified to operate at the assurance level required by the channel
instantiation. Example:

One channel is aready running with a SECRET key, the new channel is to be
instantiated with a TOP SECRET key and the Crypto is only certified for System
High operation.

CertificateNotRequired
A certificate is not required for this channel instantiation.
ChanTypeAlgorithmMismatch

4-21

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

The specified algorithm does not support the requested channel type.
DeviceError

The channel could not be created because of a hardware error.
InvalidAlgorithmid

The agorithm ID is maformed or the algorithm does not exist.
InvalidCertificateld

The certificate ID is malformed or the certificate does not exist.
InvalidKeyld

The key 1D is malformed or the key does not exist.
InvalidMode

The mode does not exist.
InvalidPolicyld

The policy ID is malformed or the policy does not exist.
InvalidProperty

The property does not exist.
KeyAlgorithmMismatch

The specified key(s) and agorithm will not work together.
KeyExpired

The specified key(s) have expired and can no longer be used.
NotCOMSECAIgorithm

The specified algorithm is not a COMSEC agorithm but a TRANSEC algorithm.
UnknownError

The channel could not be created because of an indeterminate error.

4-22

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

45.2 CRYPT_GET_CHAN_CONFIG.
This primitive retrieves the configuration of an instantiated crypto channel.

45.2.1 Synopsis.

void getChannel Config (
in ChannelldType channel,
out Channel ConfigType configinfo
) raises (InvalidChannelld);

45.2.2 Parameters.
channel

The identifier of an instantiated channel.
configlnfo

The channel configuration information. See 4.5.1.2 for the definition of
Channel ConfigType.

4523 State.

The primitive is vaid in any state.
45.2.4 New State.

The resulting state is unchanged.

4525 Response.
N/A.
45.2.6 Originator.
This primitive is initiated by the service user.
45.2.7 Errors/Exceptions.
The following exceptions may be raised:
InvalidChannelld
The specified channel identifier does not correspond to an instantiated crypto channel.

4-23

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

453 CRYPT_DESTROY_CHAN.

This primitive destroys an instantiated crypto channel and returns all the resources allocated to it
back to the pool of available resources.

453.1 Synopsis.

void destroyChannel (
in ChannelldType channel
) raises (InvalidChannelld, UnknownError);

45.3.2 Parameters.
channel

| dentifies the instantiated channel to destroy.
453.3 State.
The primitiveisvaid in any state.
4534 New State.
N/A.

4.5.3.5 Response.
N/A.

45.3.6 Originator.
This primitive is initiated by the service user.
4.5.3.7 Errors/Exceptions.
The following exceptions may be raised:
InvalidChannelld
The specified channel identifier does not correspond to an instantiated crypto channel.
UnknownError

An error of unidentified origin occurred during channel tear down.

4-24

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

454 CRYPT_START_CHAN.
This primitive starts a cryptographic channel for an identified mode.

45.4.1 Synopsis.

void startChannel (

in ChannelldType channel,

in string mode
) raises (Channel AlreadyStarted, ChannelInAlarm, DeviceError, InvalidChannelld, InvalidM ode,
UnknownError);

4542 Parameters.
channel

The identifier of the channdl to start
mode
The mode of the channd to start

4543 State.
This primitive is valid in the IDLE state.

4544 New State.
The resulting state isACTIVE.

4545 Response.
N/A.

45.4.6 Originator.
This primitive is initiated by the service user.
45.4.7 Errors/Exceptions.
Channel AlreadyStarted

The channel has already been started.
ChannellnAlarm

The channel isin crypto alarm and cannot be used.
DeviceError

A device error has occurred.
InvalidChannelld

The specified channel identifier does not correspond to an instantiated crypto channel.
InvalidMode

No such mode is available for the instantiated channel.
UnknownError

An unknown error has occurred.

4-25

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

455 CRYPT_STOP_CHAN.
This primitive stops a channel.

455.1 Synopsis.

void stopChannel (

in ChannelldType channel,

in string mode
) raises (ChannellnAlarm, ChannelNotStarted, DeviceError, InvalidChannelld, InvalidMode,
UnknownError);

4552 Parameters.
channel

| dentifies the channel to stop.
mode
| dentifies the mode to stop.

4553 State.
This primitive isvaid in the ACTIVE state.

4554 New State.
The resulting state is unchanged.

4555 Response,
N/A.

455.6 Originator.
This primitive is initiated by the service user.
455.7 Errors/Exceptions.
ChanndlnAlarm

The channel isin crypto alarm and cannot be used.
ChannelNotStarted

The channel was never started.
DeviceError

A device error has occurred.
InvalidChannelld

The specified channel identifier does not correspond to an instantiated crypto channel.
InvalidMode

No such mode is available for the instantiated channel.
UnknownError

An unknown error has occurred.

4-26

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

456 CRYPT_RESET_CHAN.
This primitive resets a crypto channel. All internal states are reset to their default values.

45.6.1 Synopsis.

void resetChannel (
in ChannelldType channel
) raises (DeviceError, InvalidChannelld, UnknownError);

45.6.2 Parameters.
channe

|dentifies the channel to reset.
45.6.3 State.
This primitive is vaid in any state.
4.5.6.4 New State.
The resulting state is of the channel is the default state upon channel creation.

45.6.5 Response.
N/A.

45.6.6 Originator.
This primitive isinitiated by the service user.
45.6.7 Errors/Exceptions.
The following exceptions may be raised:
DeviceError
A device error occurred on the channel and the channel could not reset properly.
InvalidChannelld
The channel identifier does not correspond to an instantiated channel.
UnknownError
An unknown error occurred on the channel and the channel could not reset properly.

4-27

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

457 CRYPT_RESET.
This primitive forces a reset of the entire cryptographic subsystem.

45.7.1 Synopsis.
void resetCrypto ();

4572 Parameters.
N/A.

4573 State.

The primitive is vaid in any state.
4574 New State.

The resulting stateis IDLE.

4.5.7.5 Response.
N/A.

45.7.6 Originator.

This primitive is initiated by the service user.
45.7.7 Errors/Exceptions.

N/A.

4-28

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

458 CRYPT_ENCRYPT.

This primitive is used for red-red or black-black encryption. It encrypts a sequence of octets and
returns the encrypted sequence to the service user.

458.1 Synopsis.

void Encrypt (
inout CF::OctetSequence data
) raises (ChannellnAlarm, DeviceError, InvalidChannelld, UnknownError);

45.8.2 Parameters.
data

Upon entry: The data to encrypt. Upon exit: the encrypted data.

4583 State.
The primitive isvaid in the ACTIVE state.

4584 New State.
The resulting state is unchanged.

4.5.8.5 Response.
N/A.

45.8.6 Originator.
This primitive is initiated by the service user.
45.8.7 Errors/Exceptions.
ChanndInAlarm
The channel isin crypto alarm and cannot be used.
DeviceError
A device error has occurred.
UnknownError
An error of indeterminate origin occurred.

4-29

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

459 CRYPT_DECRYPT.

This primitive is used for red-red or black-black decryption. It decrypts a sequence of octets and
returns the decrypted sequence to the service user.

459.1 Synopsis.

void Decrypt (
inout CF::OctetSequence data
) raises (ChannellnAlarm, DeviceError, UnknownError);

459.2 Parameters.
data

Upon entry: The data to decrypt. Upon exit: the decrypted data.

45.9.3 State.
The primitive isvaid in the ACTIVE state.

4594 New State.
The resulting state is unchanged.

4.5.9.5 Response.
N/A.

45.9.6 Originator.
This primitive is initiated by the service user.
45.9.7 Errors/Exceptions.
ChanndInAlarm
The channel isin crypto alarm and cannot be used.
DeviceError
A device error has occurred.
UnknownError
An error of indeterminate origin occurred.

4-30

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.5.10 CRYPT_ENCRYPT_WITH_ID.

This primitive is used for red-red or black-black encryption. It encrypts a sequence of octets and
returns the encrypted sequence to the service user. Multiple channels are multiplexed through
the interface by channel ID.

4.5.10.1 Synopsis.

void Encrypt (
in ChannelldType channel,
inout CF::OctetSequence data
) raises (ChannelInAlarm, DeviceError, InvalidChannelld, UnknownError);

4.5.10.2 Parameters.
channel

The identifier for the channel to use for the encryption.
data
The data to encrypt and the returned encrypted data.

4.5.10.3 State.
The primitive isvaid in the ACTIVE state.

4.5.10.4 New State.
The resulting state is unchanged.

4.5.10.5 Response.
N/A.

4.5.10.6 Originator.
This primitive is initiated by the service user.
4.5.10.7 Error gExceptions.
ChannelInAlarm
The channel isin crypto alarm and cannot be used.
DeviceError
A device error has occurred.
InvalidChannelld
The specified channel identifier does not correspond to an instantiated crypto channel.
UnknownError
An error of indeterminate origin occurred.

4-31

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4511 CRYPT_DECRYPT_WITH_ID.

This primitive is used for red-red or black-black decryption. It decrypts a sequence of octets and
returns the decrypted sequence to the service user. Multiple channels are multiplexed through
the interface by channel ID.

45.11.1 Synopsis.

void Decrypt (
in ChannelldType channel,
inout CF::OctetSequence data
) raises (ChannelInAlarm, DeviceError, InvalidChannelld, UnknownError);

4.5.11.2 Parameters.
channel

The identifier for the channel to use for the decryption.
data
The data to decrypt and the returned decrypted data.

4.5.11.3 State.
The primitive isvaid in the ACTIVE state.

4.5.11.4 New State.
The resulting state is unchanged.

4.5.11.5 Response.
N/A.

4.5.11.6 Originator.
This primitive is initiated by the service user.
4.5.11.7 Error gExceptions.
ChannelInAlarm
The channel isin crypto alarm and cannot be used.
DeviceError
A device error has occurred.
InvalidChannelld
The specified channel identifier does not correspond to an instantiated crypto channel.
UnknownError
An error of indeterminate origin occurred.

4-32

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.5.12 CRYPT_TRANSFORM_REQ.

This primitive performs red-black encryption and black-red decryption. The location of the
object that realizes the interface determines whether decryption or encryption occurs.

45.12.1 Synopsis.

oneway void transform (
in any bypass,
in CF::OctetSequence payload
);

45.12.2 Parameters.

bypass
Waveform specific header information to be bypassed through the crypto (e.g. addresses,
and real time control).

payload
The payload to be encrypted/decrypted.

45.12.3 State.

The primitive isvaid in the ACTIVE state.

4.5.12.4 New State.
The resulting state is unchanged.

4.5.12.5 Response.
N/A.

4.5.12.6 Originator.

This primitive is initiated by the service user. Note: this same primitive is initiated by the service
provider on the opposite side of the cryptographic boundary after the transform is complete. The
service user therefore must implement this interface for waveform data transfer out of the
cryptographic subsystem.

4.5.12.7 Errors/Exceptions.

N/A.

4-33

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

45.13 CRYPT_TRANSFORM REQ WITH_ID.

This primitive performs red-black encryption and black-red decryption. The location of the
object that realizes the interface determines whether decryption or encryption occurs. Multiple
channels are multiplexed through the interface by channel ID.

4.5.13.1 Synopsis.

oneway void transform (
in ChannelldType channel,

in any bypass,
in CF::OctetSequence payload

);
4.5.13.2 Parameters.
channel
The identifier for the channel to use for the encryption/decryption.
bypass

Waveform specific header information to be bypassed through the crypto (e.g. addresses,
and real time control).

payload
The payload to be encrypted/decrypted.

4.5.13.3 State.
The primitive is valid in the ACTIVE state.

4.5.13.4 New State.
The resulting state is unchanged.

4.5.13.5 Response.

N/A.

4.5.13.6 Originator.

This primitive is initiated by the service user.

4.5.13.7 Errors/Exceptions.
N/A.

4-34

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

46 KEY.
The Key Management Service is a specialization of the Fill::Manager as Figure 4-8 illustrates.

<<Interface>>
Manager
(from Fill)

<<inherits>

<<Interface>>
Manager

%update(ID : in IDType) : boolean
MgetUpdateCount(ID : in IDType) : octet
WstoreKey(ID : in IDType) : void

Figure4-8. ClassDiagram: Key Management Service

4.6.1 KEY_ZEROIZE.

This primitive deletes al instances of a single key from a security service as specified by the ID.
See paragraph 4.2.9 for the semantics and behavior.

4.6.2 KEY_ZEROIZE_ALL.

This primitive deletes al keys from a security service. See paragraph 4.2.10 for the semantics
and behavior.

463 KEY_GET_IDS.

This primitive retrieves the identifiers of al the keys resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

4.6.4 KEY_EXPIRY.

This primitive retrieves the expiration date and time for a given key within a security service.
See paragraph 4.2.12 for the semantics and behavior.

4-35

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.6.5 KEY_UPDATE.

This primitive updates a key, which in effect creates anew key. The ID remains the same but
the update count is incremented by one. Update counts of a key must remain in sync for peersto
communicate.

4.6.5.1 Synopsis.

boolean update (
in 1dType id
) raises (Invalidid, KeylnUse);

4.6.5.2 Parameters.
id

The identifier of the key to update.
4.6.5.3 State.
The primitiveisvaid in any state.
4.6.54 New State.
The resulting state is unchanged.

4.6.5.5 Response.
N/A.

4.6.5.6 Originator.
This primitive is initiated by the service user.
4.6.5.7 ErrorgExceptions.
The following exception may be raised:
Invalidid
The key ID is either malformed or the key does not exist.
KeylnUse
The key cannot be update because it key is being used by an instantiated channel.

4-36

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

46.6 KEY_GET_UPDATE_COUNT.
This primitive retrieves the current update count for a key.

4.6.6.1 Synopsis.

octet getUpdateCount (
in [dType id
) raises (Invalidid);

4.6.6.2 Parameters.
id
The identifier of the key for which to retrieve the update count.
46.6.3 State.
The primitive is valid in any state.
4.6.6.4 New State.
The resulting state is unchanged.
4.6.6.5 Response.
The update count of the key is returned.
4.6.6.6 Originator.
This primitive isinitiated by the service user.
4.6.6.7 Errors/Exceptions.
The following exception may be raised:
Invalidid
The key ID is either malformed or the key does not exist.

4-37

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

467 KEY_STORE_KEY.

This primitive stores a key that is loaded from a DS-102 configured port. Keys loaded by the DS
102 protocol do not have identifiers attached to them. This primitive assigns an identifier.

4.6.7.1 Synopsis.

void storeKey (
in [dType id
) raises (Duplicateld, Invalidid, NoKey);

4.6.7.2 Parameters.
id

The identifier to be associated with the stored key.

4.6.7.3 State.
This primitive is valid in the PENDING_STORE state.

4.6.74 New State.
The resulting state is ENABLED.

4.6.7.5 Response.
N/A.

4.6.7.6 Originator.
This primitive is initiated by the service user.
4.6.7.7 Errors/Exceptions.
The following exception may be raised:
Duplicateld
A key aready exists with the specified identifier.
Invalidid
The key ID is malformed.
NoKey
There is no key loaded via DS-102 awaiting storage.

4-38

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
47 TRANSEC.

Figure 4-9 illustrates the TRANSEC management, control and Key Stream generation services.

<<Interface>> <<Interface>>
Manager Controller
(from Fill)

*'createTransecCChannel(configinfo : in ChannelConfigType) : ChannellDType

“getTransecCChannelConfig(channel : in IDType, configinfo : out ChannelConfigType) : void
“destroyTransecCChannel(channel : in ChannellDType) : void

\,

\\ <<uses>>
<<inherits>>

\
\\
N
<< >>
:\:terface <<CORBAStruct>>
anager ChannelConfigType
“storeTransec(ID : in IDType) : void ;:ilego.nltg_lr? ; IeDType
“getTransecUFill(ID : in IDType, fill : out CF::OctetSequence) : void ALy e P
e
/I
/
//
//
/. <<uses>> <<CORBAEXxception>>
k InvalidChannellD
<<CORBATypedef>>
OctetSequence
(from CF)

<<Interface>>
Provider

*genKeyStream(channel : in ChannellDType, seed : in any, numBits : in unsigned long, keyStream : out CF::OctetSequence) : void
*genNextKeyStream(channel : in ChannellDType, numbits : in unsigned long, keyStream : out CF::OctetSequence) : void

Figure4-9. ClassDiagram: TRANSEC Services

4-39

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.71 TRAN_CREATE_CHAN.

This primitive creates a classified TRANSEC channel. The channel will generate Key Stream
data.

4.7.1.1 Synopsis.

ChannelldType createTransecCChannel (

in Channel ConfigType configinfo
) raises (InvalidAlgorithmid, InvalidKeyld, , KeyAlgorithmMismatch, NotTRANSECAIgorithm,
ResourcesUnavailable);

4.7.1.2 Parameters.
configlnfo

The channel ConfigType has the following structure:

struct Channel ConfigType {
|dTypealgorithm;

IdTypekey;
};

algorithm

Identifies the TRANSEC algorithm.
key

Identifies the TRANSEC key.

47.1.3 State.
N/A.

4.7.1.4 New State.
The resulting state isACTIVE.

47.1.5 Response.
N/A.

4.7.1.6 Originator.
This primitive is initiated by the service user.
4.7.1.7 Errors/Exceptions.
The following exceptions may be raised:
InvalidAlgorithmid
The agorithm identifier is malformed or the agorithm does not exist.
InvalidKeyld
The key identifier is malformed or the key does not exist.
KeyAlgorithmMismatch

4-40

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

The selected key cannot be used with the selected algorithm.
NotTRANSECAIgorithm

The selected algorithm is not a TRANSEC algorithm.
ResourcesUnavailable

The required resources are unavailable for instantiating the channel.

4-41

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

472 TRAN_GET_CHAN_CONFIG.
This primitive retrieves the configuration of an instantiated TRANSEC channel.

4.7.2.1 Synopsis.

void getTransecCChannel Config (
in [dType channdl,
out Channel ConfigType configinfo
) raises (InvalidChannelld);

4.7.2.2 Parameters.
channel

Identifies the instantiated channel from which to retrieve the configuration information.
configlnfo

The returned channel configuration information. See paragraph 4.7.1.2 for the structure.
4723 State.
This primitive is vaid in any state.
4.7.24 New State.
The resulting state is unchanged.

4.7.2.5 Response.

N/A.

4.7.2.6 Originator.

This primitive is initiated by the service user.
4.7.2.7 Errors/Exceptions.
InvalidChannelld

The specified channel identifier does not correspond to an instantiated TRANSEC
channel.

4-42

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.7.3 TRAN_DESTROY_CHAN.

This primitive destroys an instantiated TRANSEC channel and returns all the resources allocated
to it back to the pool of available resources.

4.7.3.1 Synopsis.

void destroyTransecCChannel (
in ChannelldType channel
) raises (InvalidChannelld);

4.7.3.2 Parameters.
channel
| dentifies the instantiated channel to destroy.
4.7.3.3 State.
This primitive is valid in any state.
4.7.3.4 New State.
N/A.
4.7.3.5 Response.
N/A.
4.7.3.6 Originator.
This primitive is initiated by the service user.
4.7.3.7 Errors/Exceptions.
InvalidChannelld

The specified channel identifier does not correspond to an instantiated TRANSEC
channel.

4-43

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

474 TRAN_GEN _KEY_STREAM.
This primitive generates Key Stream data for a TRANSEC channel. The algorithm is re-seeded.

4.7.4.1 Synopsis.
void genKeyStream (

in ChannelldType channel,
in any seed,
in unsigned long numBits,

out CF::OctetSequence keyStream
) raises (ChannellnAlarm, DeviceError, InvalidChannelld, UnknownError);

4.7.4.2 Parameters.
channel

| dentifies the instantiated channel.
seed

Identifies the TRANSEC algorithm seed. They type of seed is agorithm dependent and
as such is defined as a CORBA any type.

numBits

The number of bits of Key Stream to generate.
keyStream

The generated Key Stream

4743 State.
This primitive isvaid in the ACTIVE date.

4744 New State.
The resulting state is unchanged.

4745 Response.
N/A.

4.7.4.6 Originator.
This primitive isinitiated by the service user.
4.7.4.7 Errors/Exceptions.
The following exceptions may be raised:
ChanndlnAlarm
The channel isin crypto alarm and cannot be used.
DeviceError
A device error has occurred.
InvalidChannelld

4-44

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

The specified channel identifier does not correspond to an instantiated crypto channel.
InvalidSeedType

The type of the TRANSEC seed does not correspond to that required by the algorithm.
InvalidSeedValue

The value of the TRANSEC seed is not valid (e.g. out of range).
UnknownError

An error of indeterminate origin occurred.

4-45

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

475 TRAN_GEN_NEXT _KEY_STREAM.

This primitive generates Key Stream data for a TRANSEC channel. The algorithm continues
generating data based on the seed last input for TRAN_GEN_KEY_STREAM or the seed input
for TRAN_CREATE_CHAN.

4.75.1 Synopsis.

void genNextKeyStream (
in ChannelldType channel,
in unsigned long numbits,
out CF::OctetSequence keyStream
) raises (ChannellnAlarm, DeviceError, InvalidChannelld, UnknownError);

4752 Parameters.

channel
Identifies the instantiated channel.

numBits
The number of bits of Key Stream to generate.

keyStream
The generated Key Stream

4.75.3 State.
This primitive is valid in the ACTIVE state.

4.7.5.4 New State.
The resulting state is unchanged.

4755 Response.
N/A.

4.75.6 Originator.
This primitive is initiated by the service user.
4.75.7 Errors/Exceptions.
The following exceptions may be raised:
ChannellnAlarm

The channel isin alarm and cannot be used.
DeviceError

A device error has occurred.
InvalidChannelld

The specified channel identifier does not correspond to an instantiated crypto channel.
UnknownError

An error of indeterminate origin occurred.

4-46

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

476 TRAN_ZEROIZE.

This primitive deletes all instances of a single TRANSEC load from a security service as
specified by the ID. See paragraph 4.2.9 for the semantics and behavior.

4.7.7 TRAN_ZEROIZE_ALL.

This primitive deletes all TRANSEC loads from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.7.8 TRAN_GET_IDS.

This primitive retrieves the identifiers of al the TRANSEC loads resident in a security service.
See paragraph 4.2.11 for the semantics and behavior.

4.79 TRAN_EXPIRY.

This primitive retrieves the expiration date and time for a given TRANSEC load within a
security service. See paragraph 4.2.12 for the semantics and behavior.

4-47

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.7.10 TRAN_STORE.

This primitive stores TRANSEC information that is loaded from a DS-102 configured port.
TRANSEC information loaded by the DS-102 protocol does not have identifiers attached to it.
This primitive assigns an identifier.

4.7.10.1 Synopsis.

void storeTransec (
in ldTypeid
) raises (Duplicateld, Invalidid);

4.7.10.2 Parameters.
id

The identifier to be associated with the stored TRANSEC fill information.

4.7.10.3 State.
This primitive may only beissued inthe FILL_STATE_ PENDING_STORE state.

4.7.10.4 New State.
Theresulting stateisFILL_STATE_ENABLED.

4.7.10.5 Response.
N/A.

4.7.10.6 Originator.
This primitive is initiated by the service user.
4.7.10.7 Error gExceptions.
The following exceptions may be raised:
Duplicateld
TRANSEC information already exists with the specified identifier.
Invalidid
The key ID is malformed.

4-48

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.7.11 TRAN_GET_FILL.

This primitive retrieves unclassified fill information for use by TRANSEC algorithms that reside
outside the cryptographic boundary.

4.7.11.1 Synopsis.

void getTransecUFill (
in [dType id,
out CF::OctetSequence fill
) raises (Invalidid);

4.7.11.2 Parameters.
id

The identifier of the TRANSEC fill to retrieve.
fill
The retrieved unclassified TRANSEC fill information.

4.7.11.3 State.
This primitive can be issued from any state.

4.7.11.4 New State.
The resulting state is unchanged.

4.7.11.5 Response.
N/A.
4.7.11.6 Originator.
This primitive is initiated by the service user.
4.7.11.7 Errors/Exceptions.
The following exception may be raised:
Invalidid
The identifier is malformed or the TRANSEC fill information does not exist.

4-49

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.8 POLICY.

<<Interface>>
Manager
(from Fill)

<<Interface>>
Manager

*getPolicy(ID : in IDType) : CORBA::Policy

/’ N\
\
/ \\
/ N
’
/

/

/

N,
\,

/

/
/ <<uses>>
/

\,
\,

<<Interface>> <<CORBATypedef>>
Policy IDType
(from CORBA) (from JTRSSecurity)

Figure4-10. Class Diagram: Policy Management Service

481 POL_ZEROIZE.

This primitive deletes all instances of a single policy from a security service as specified by the
ID. Seeparagraph 4.2.9 for the semantics and behavior.

482 POL_ZEROIZE ALL.

This primitive deletes all policies from a security service. See paragraph 4.2.10 for the semantics
and behavior.

483 POL_GET_IDS.

This primitive retrieves the identifiers of all the policies resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

4.84 POL_EXPIRY.

This primitive retrieves the expiration date and time for a given policy within a security service.
See paragraph 4.2.12 for the semantics and behavior.

4-50

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

485 POL_GET POLICY.

This primitive retrieves a policy from the Policy Manager. The information contained in the
policy may then be used by an enforcement mechanism to implement access control, bypass
filtering, etc. { Note: Policies enter the cryptographic subsystem in XML format. The XML
definitions for specific policies have yet to be defined. For policies that are used outside the
cryptographic boundary, IDL definitions must exist. The IDL definitions will be specializations
of the CORBA::Palicy interface. These definitions have yet to be defined as well.}

4.85.1 Synopsis.

CORBA::Palicy getPolicy (
in 1dType id
) raises (Invalidid);

4.8.5.2 Parameters.
id

The identifier of the policy to retrieve

4.85.3 State.
N/A.

4.8.5.4 New State.
N/A.

4.85.5 Response.

A CORBA Policy isreturned. The policy may be narrowed to the specific policy type of
interest.

4.8.5.6 Originator.

This primitive isinitiated by the service user.
4.8.5.7 ErrorgExceptions.

The following exception may be raised:
Invalidid

The policy identifier is malformed or the policy does not exist.

4-51

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

49 |INTEGRITY AND AUTHENTICATION.

<<Interface>>
Controller

*createContext(certificatelD : in IDType) : ContextType
*vdeleteContext(context : in ContextType) : void

<<uses>>

<<CORBATypedef>>
ContextType

<<uses>>

<<Interface>>
Provider

WsignFile(context : in ContextType, fileSystem : in CF::FileSystem, file : in string) : void
*werifyFile(context : in ContextType, fileSystem : in CF::FileSystem, file : in string) : boolean
“hashData(context : in ContextType, data : in CF::OctetSequence) : void
MsignHash(context : in ContextType) : SignatureType

MwyerifySignature(context : in ContextType, signature : in SignatureType) : boolean

N
/ N

S/ N\ <<uses>>
<<U§es>> \\
<<CORBATypedef>> <<CORBATypedef>>
SignatureType OctetSequence
(from CF)

Figure4-11. Class Diagram: Integrity and Authentication Services

Figure 5-4 shows the states of an Integrity and Authentication context from creation to
destruction.

4-52

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

49.1 IA_CREATE_CONTEXT.

This primitive creates a context for performing integrity and authentication. The primitive
returns a context for use in subsequent invocation of Integrity and Authentication primitives.

49.1.1 Synopsis.

ContextType createContext (
in [dType certificateld
) raises (CertificateExpired, InvalidCertificatel d);

49.1.2 Parameters.
certificateld

The identifier of the certificate to use for the context. The certificate identifies the private
and public key pairs to be used.

49.1.3 State.
There is no state until a context is created.

49.14 New State.
The resulting state isHASH_INITIALIZED.

49.1.5 Response.
The primitive returns and opaque handle which represents the created context.

49.1.6 Originator.
This primitive is initiated by the service user.
49.1.7 ErrorgExceptions.
The following exceptions are raised:
CertificateExpired
The identified certificate has expired and cannot be used.
InvalidCertificateld
The certificate identifier is malformed or the certificate does not exist.

4-53

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

49.2 |A_DESTROY_CONTEXT .
This primitive destroys the context created by the IA_CREATE_CONTEXT primitive.

4.9.2.1 Synopsis.

void deleteContext (
in ContextType contextld
) raises (InvalidContextld);

49.2.2 Parameters.
contextld

The identifier of the context to destroy.
49.2.3 State.
This primitive may issued from any state.
4.9.2.4 New State.
There is no state as the context is destroyed.
4.9.2.5 Response.
N/A.
4.9.2.6 Originator.
This primitive isinitiated by the service user.
4.9.2.7 Errors/Exceptions.
The following exception is raised:
InvalidContextld

The context identifier does not correspond to a valid context.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

493 IA_SIGN_FILE.

This primitive performs a secure hash of the contents of afile, signs the hash, attaches the
signature to the file and initializes the internal hash associated with the context. This primitive
may be called multiple times with the same context to sign multiple files.

49.3.1 Synopsis.

void signFile (
in ContextType contextld,
in CF::FileSystem fileSystem,
in string file

) raises (InvalidContextld, HashNotlnitialized);

4.9.3.2 Parameters.
contextld

The identifier of the context to use for signing the file.
fileSystem

Identifies the location of the file to be signed.
file

The name of the file to be signed.

4933 State.
This primitive may only be issued when the context isin the HASH_INITIALIZED state.

4934 New State.
The resulting state is unchanged.

49.3.5 Response.
N/A.

4.9.3.6 Originator.
This primitive is initiated by the service user.
4.9.3.7 Errors/Exceptions.
InvalidContextld
The context identifier does not correspond to a valid context.
HashNotInitialized

The context's current state is HASH_IN_PROGRESS and cannot be used for signing or
verifying whole files until the current hash has been signed or verified.

4-55

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

494 1A_VERIFY_FILE.

This primitive decrypts the signature attached to the file into a hash value, performs a secure
hash of the contents of the file and compares the decrypted hash with the computed hash. If they
are identical, the file is verified. The internal hash is initialized upon completion. This primitive
may be called multiple times with the same context to verify multiple files.

49.4.1 Synopsis.
boolean verifyFile (

in ContextType contextld,
in CF.:FileSystem fileSystem,
in string file

) raises (InvalidContextld, HasNotlnitialized);

4942 Parameters.
contextld

Identifies the context to use to verify thefile.
fileSystem

Identifies the location of the file to be verified.
file

The name of the file to be verified.

4943 State.
This primitive may only be issued when the context isin the HASH_INITIALIZED state.

4944 New State.
The resulting state is unchanged.

4945 Response.
This primitive returns a bool ean:

FALSE Thefileis not verified.
TRUE Thefileis verified.
4.9.4.6 Originator.
This primitive is initiated by the service user.
4.9.4.7 Errors/Exceptions.
InvalidContextld
The context identifier does not correspond to a valid context.
HashNotInitialized

The context's current state is HASH_IN_PROGRESS and cannot be used for signing or
verifying whole files until the current hash has been signed or verified.

4-56

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
495 |A_HASH.

This primitive performs a secure hash of ablock of data. This function may be called iteratively
to compute the hash over several blocks of data. ThelA_SIGN_FILE or IA_VERIFY_FILE
primitives may not be called once this primitive is invoked for a context until an
IA_SIGN_HASH or IA_VERIFY primitive has been called.

495.1 Synopsis.

void hashData (
in ContextType contextld,
in CF::OctetSequence data

) raises (InvalidContextld);

495.2 Parameters.
contextld

|dentifies the context to use to verify the file.
data

The block of data for which to compute the hash.
4953 State.
This primitive may be issued in any state.
4954 New State.
The resulting state is HASH_IN_PROGRESS.

4955 Response.
N/A.

4.9.5.6 Originator.

This primitive isinitiated by the service user.
4.95.7 Errors/Exceptions.
InvalidContextld

The context identifier does not correspond to a valid context.

4-57

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

496 IA_SIGN_HASH.

This primitive signs the computed hash value held within the integrity and authentication context
and returns the digital signature to the caller. The internal hash is initialized upon completion.

49.6.1 Synopsis.

SignatureType signHash (
in ContextType contextld
) raises (InvalidContextl d);

4.9.6.2 Parameters.
contextld

|dentifies the context to use sign the hash.

4.9.6.3 State.
This primitive may only be issued in the HASH_IN_PROGRESS state.

49.6.4 New State.
The resulting state isHASH_INITIALIZED.

49.6.5 Response.
N/A.

4.9.6.6 Originator.
This primitive is initiated by the service user.
4.9.6.7 Errors/Exceptions.
InvalidContextld
The context identifier does not correspond to a valid context.
NoHashCal cul ated

The context's current stateis HASH_INITIALZED. There have been no invocations of
the lA_HASH primitive to calculate a hash value.

4-58

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

49.7 1A_VERIFY_HASH.

This primitive decrypts the provided signature and compares it with the computed hash value
held within the integrity and authentication context. The internal hash is initialized upon
completion.

49.7.1 Synopsis.

boolean verifySignature (
in ContextType contextld,
in SignatureType signature
) raises (InvalidContextld);

4.9.7.2 Parameters.
contextld

Identifies the context to use sign the verify the hash.
signature
The signature to decrypt and compare against the computed hash.

4.9.7.3 State.
This primitive may only be issued in the HASH_IN_PROGRESS state.

49.74 New State.
The resulting state isHASH_INITIALIZED.

49.7.5 Response.
This primitive returns a bool ean:

FALSE The hashis not verified.
TRUE The hashis verified.
4.9.7.6 Originator.
This primitive is initiated by the service user.
4.9.7.7 Errors/Exceptions.
InvalidContextld
The context identifier does not correspond to a valid context.
NoHashCalcul ated

The context's current stateis HASH_INITIALZED. There have been no invocations of
the lA_HASH primitive to calculate a hash value.

4-59

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

410 ALARM.

Figure 4-12 shows the type definitions defined for audit records to be logged when security
alarms occur. {Note: It is assumed that the CF::Logger interface will be used for this function.
The CF.:Logger asit isdefined currently does not support this but a change proposal is pending
to make the necessary changes.} The alarm record covers many different types of alarms and is
not available for general consumption. Access to the records will be limited by security policies.

<<CORBAStruct>>
RecordType

sevent : EventType
»cause : CauseType

Aseverity : SeverityType <<uses>>
malarmDetector : string | <<CORBAEnum>>
aserviceUser :string | TTTe=<l__ N EventType

»serviceProvider : string

" . AAE_INTEGRITY_VIOLATION
~additionallnfo : string

! AAE_OPERATIONAL_VIOLATION
ki N AAE_PHYSICAL_VIOLATION

\
/ Y,

/ \ #AE_SERVICE_VIOLATION

/ \, <<uses>> AAE_TIME_DOMAIN_VIOLATION
/ <<uses>> “
<<CORBAENUm>>
CauseType \\
»AC_DUPLICATE_INFO N
AAC_INFO_MISSING <<CORBAENnum>>
#AC_INFO_MOD_DETECTED SeverityType
AAC_INFO_OUT_OF_SEQUENCE #AS_INDETERMINATE
#AC_UNEXPECTED_INFO #AS_CRITICAL
#AC_DENIAL_OF_SERVICE »AS_MAJOR
AAC_OUT_OF_SERVICE #AS MINOR
AAC_PROCEDURAL_ERROR #AS_WARNING

#AC_UNSPECIFIED_REASON
#AC_CABLE_TAMPER
AAC_INTRUSION_DETECTION
AAC_AUTHENTICATION_FAILURE
#AC_BREACH_OF_CONFIDENTIALITY
#AC_NON_REPUDIATION_FAILURE
#AC_UNAUTHORIZED _ACCESS_ATTEMPT
»AC_DELAYED_INFO

AAC_KEY_EXPIRED

AAC_OUT_OF HOURS_ACTIVITY

Figure4-12. Class Diagram: Alarm Type Definitions

Figure 4-13 shows the alarm service it self. Thisis a service for notifying the Security Service
User and is a simple indicator that a Crypto Alarm has occurred. There are no user access
controls on thisindicator. The implementation of the service resides with Security Service User.
The Security Service merely invokes it when a crypto Alarm has occurred.

4-60

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

<<Interface>>
User

®signalAlarm(qualifier : in string) : void

Figure4-13. Class Diagram: Alarm Service

4-61

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
4.10.1 ALARM_SIGNAL.
This primitive signals a security service user of a crypto alarm.

4.10.1.1 Synopsis.

void signalAlarm (
in string qualifier
);

4.10.1.2 Parameters.
qualifier
A string to provide additional information about the alarm such as a channel identifier.

4.10.1.3 State.

This primitive may only be issued when a Crypto or TRANSEC channel enters the ALARM
state.

4.10.1.4 New State.

The state remains unchanged.

4.10.1.5 Response.

N/A.

4.10.1.6 Originator.

This primitive is initiated by the service provider.

4.10.1.7 Errors/Exceptions.
N/A.

4-62

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

411 TIME.
The Time Management service is shown in Figure 4-14.

<<Interface>>
Manager

™setTime(time : in TODType) : void
*getTime() : TODType
*setDate(date : in DateType)
*getDate() : DateType

/ \,
/ \,

/’ \\\ <<uses>>
J/ ! <<uses>> \\\
<<CORBAStruct>> <<CORBAStruct>>
TODType DateType
(from JTRSSecurity) (from JTRSSecurity)

Figure 4-14. Class Diagram: Time Management Service

4-63

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4111 TIME_SET _TOD
This primitive sets the time of day kept within the cryptographic subsystem.

4.11.1.1 Synopsis.

void setTime (
in TODType time
) raises (InvaidValue);

4.11.1.2 Parameters.
time
Thetime of day to set.
TODTYype has the following structure:

struct TODType {
unsigned long seconds;
unsigned long nanoseconds,

H

seconds

The number of seconds past midnight. A value greater than 86399 isinvalid and
will raise an InvalidValue exception

nanoseconds

The number of nanoseconds since the last increment of seconds. A value greater
than 999,999,999 isinvalid and will raise an InvalidVaue exception.

4.11.1.3 State.
N/A.

4.11.1.4 New State.
N/A.

4.11.1.5 Response.
N/A.

4.11.1.6 Originator.

This primitive is initiated by the service user.
4.11.1.7 Error/Exceptions.

The following exception may be raised:
InvalidValue

Thetimeis not avalid time of day.

4-64

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4112 TIME_GET_TOD.
This primitive returns the time of day maintained by the cryptographic subsystem.

4.11.2.1 Synopsis.
TODType getTime ();

4.11.2.2 Parameters.
N/A.

4.11.2.3 State.
N/A.

4.11.2.4 New State.

N/A.

4.11.2.5 Response.

The time of day isreturned. See paragraph 4.11.1.2 for the structure.
4.11.2.6 Originator.

This primitive is initiated by the service user.

4.11.2.7 Errors/Exceptions.

N/A.

4-65

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.11.3 TIME_SET_DATE.
This primitive sets the date kept within the cryptographic subsystem.

4.11.3.1 Synopsis.

void setDate (
in DateType date
) raises (InvaidValue);

4.11.3.2 Parameters.

date
The date to set. DateType has the following structure:
struct DateType {
YearType year;
DayType day;
};
year
The year relative to an established reference.
day
The day. Valid values are 1-365 or 366 depending on the year. A value outside
this range causes InvalidVa ue exception to be raised.
4.11.3.3 State.
N/A.
4.11.3.4 New State.
N/A.
4.11.3.5 Response.
N/A.

4.11.3.6 Originator.

This primitive is initiated by the service user.
4.11.3.7 Errors/Exceptions.

The following exception may be raised:

InvalidValue
The date is not a valid date.

4-66

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4114 TIME_GET_DATE.
This primitive returns the date maintained by the cryptographic subsystem.

4.11.4.1 Synopsis.
DateType getDate ();

4.11.4.2 Parameters.
N/A.

4.11.4.3 State.
N/A.

4.11.4.4 New State.

N/A.

4.11.4.5 Response.

The dateisreturned. See paragraph 4.11.3.2 for the structure.
4.11.4.6 Originator.

This primitive is initiated by the service user.

4.11.4.7 Errors/Exceptions.

N/A.

4-67

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

4.12 GPS.

<<Interface>>
Manager
(from Transec)

<<inherits>

<<Interface>>
Manager

Figure 4-15. Class Diagram: GPS Management Service

4.12.1 GPS_ZEROIZE.

This primitive deletes all instances of a single TRANSEC load from a security service as
specified by the ID. See paragraph 4.2.9 for the semantics and behavior.

4.12.2 GPS ZEROIZE_ALL.

This primitive deletes al TRANSEC loads from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.12.3 GPS_GET_IDS.

This primitive retrieves the identifiers of all the TRANSEC loads resident in a security service.
See paragraph 4.2.11 for the semantics and behavior.

4.12.4 GPS_EXPIRY.

This primitive retrieves the expiration date and time for a given TRANSEC load within a
security service. See paragraph 4.2.12 for the semantics and behavior.

4-68

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.

There are services within the security APl which when implemented require maintenance of state
information. This section identifies the states associated with these services and the order in
which the service primitives may be invoked.

51 FILL STATES.
Table 5-1 describes the states associated with an instantiated crypto channel

Table5-1. Fill States

STATE DESCRIPTION
DISABLED The fill port is disabled
ENABLED Thefill port is enabled
LOAD_IN_PROGRESS The load of fill information isin progress
PENDING_STORE The fill information requires an ID to be assigned to it
(DS-102 only)

The state diagram in Figure 5-1 illustrates the allowable sequence of primitives for fill
operations. DS-101 and DS-102 type fills are differentiated by the need to assign identifiers to
DS-102 fill information. The PENDING_STORE state reflects this difference. From a state
perspective DS-101 and RS-232 fills can be considered identical.

5-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

’ DISABLED (BEGIN)

FILL_PQRT_ENABLE

<<Fill State>>
ENABLED
<<DS-101>>
FILL_PORT_LOAD ed
Load Faile
Load Comple <<p€-1025>
KEY_STORE_KEY, TRAN _STORE
<<Fill State>>
LOAD_IN_PROGRESS
<¢DS-102>>
Load Complete
<<Fill State>>
PENDING_STORE

FILL_PQRT_DISABLE

DISABLED (END)

Figure5-1. Fill State Transitions

5.2 CRYPTO CHANNEL STATES.

5-2

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Table 5-2 describes the states associated with an instantiated crypto channel.

5-3

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

Table5-2. Crypto Channel States

STATE DESCRIPTION
IDLE Crypto channel is created but has not been started
ACTIVE Crypto channel has been started in a given mode
ALARM An alarm has occurred and the channel has been disabled.

The state diagram in Figure 5-2 illustrates the allowable sequence of primitives for a crypto
channel from creation to destruction.

No channel

CR
CRYPT_CR CHAN

YPT_RESET_CHAN

[

<<crypto channel state>>

ID

LE

CRYPT RH

CRYPT_START_CHAN

CRYPT_RESHT CHAN

'SET_CH

CRYPT_STQP_CH

<<crypto channel state>>
ACTIVE

|

Detected

<<crypto channel state>>

ALARM CRYPT_

|

CRYPT_DESTROY_CHAN

DESTROY_CHAN

Figure5-2. State Diagram: Crypt

Channel Destroyed

o0 Channd State Transitions

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
5.3 TRANSEC CHANNEL STATES.
Table 5-3 describes the states associated with an instantiated crypto channel.
Table5-3. TRANSEC Channel States
STATE DESCRIPTION
ACTIVE TRANSEC channédl has been started.
ALARM An alarm has occurred and the channel has been disabled.

The state diagram in Table 5-3 illustrates the allowable sequence of primitives for a crypto
channel from creation to destruction.
No channel

REATE_CHAN

<<crypto channel state>>
ACTIVE

Alarm Conditjgh Detected

<<crypto channel state>>
ALARM

} TRANS_DESTROY_CHAN

TRANS_DESTROY_CHAN

?%Destroyed

Figure5-3. State Diagram: TRANSEC Channel State Transitions

5-5

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
54 INTEGRITY AND AUTHENTICATION STATES.
Table 5-4 describes the states associated with an Integrity and Authentication context.
Table5-4. Integrity and Authentication States
STATE DESCRIPTION
HASH_INITIALIZED The internal hash associated with the context has been
initialized and is ready for use.
HASH_IN_PROGRESS The hash has been updated from a chunk of data and cannot be
used for verification or signature.

IA_SIGN_FILE, IA_VERIFY_FILE

. No Context
IA_ CREATE | XT
<<context state>>
HASH_INITIALIZED

IA_SIGN_HASH, IA_VERJEY_HASH

IA_HASH

()

<<context state>>
HASH_IN_PROGRESS

IA_DESTROY_CONTEXT

C.S Context Destroyed

Figure5-4. State Diagram: Integrity and Authentication Context State Transitions

S-7

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

APPENDIX A. PRECEDENCE OF SERVICE PRIMITIVES

Not applicable.

A-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

APPENDIX B. SERVICE USER GUIDELINES

{TBD}.

B-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

APPENDIX C. SERVICE PROVIDER-SPECIFIC INFORMATION

{TBD}.

C-1

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

MSRC-5000SEC

Security APl Service Definition

APPENDIX D. IDL

#i f ndef
#defi ne

__JTRSSECURI TY_DEFI NED
__JTRSSECURI TY_DEFI NED

/* Cmdentification
9X% %P0 %% %N */

"cf.idl”
"orb.idl"

#i ncl ude
#i ncl ude

nodul e JTRSSecurity {
typedef string |dType;
/* Sequence of IDs. Used identify multiple keys,

typedef sequence <l dType> | dSequenceType;

/* An exanple Security Manager that

i nterface Manager {
exception ZeroizeFail ed {
b
[* Zeroize all fill
and policies).
@ oseui d 39E4D4BD0164 */
void zeroizeAl ();

data (keys, algorithns,

1
t ypedef unsigned short Year Type;

typedef octet MonthType;

typedef octet DayType;

/* Place holder for date definition. */

struct DateType {
Year Type year;
DayType day;

b

/* Place hol der
time past mdnight. */

for TOD definition. This current

struct TODType {
unsi gned | ong seconds;
unsi gned | ong nanoseconds;

b

D-1

al gorithms,

aggregates the fil

rev. 1.0

etc. */

managers. */

transec, certificates

definition represents

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

/* Used to identify an instantiated crypto or transec channel. */
t ypedef unsigned | ong Channel | dType;
nmodul e [andA {

typedef CF:: Cctet Sequence Si ghatureType;

typedef unsigned | ong Context Type;

exception InvalidContextld {

b

/* This interface provides operations to verify the integrity and
authenticity of files and data. A channel of CT_BUSS FILL nust be create
first. */

i nterface Provider {
exception HashNotlnitialized {

b

exception NoHashCal cul ated {

b

/* This operation attaches a digital signature to a file.
@ oseui d 39EB2CA401C7 */
void signFile (

i n ContextType contextld,

in CF::FileSystemfil eSystem

in string file

)

rai ses (lnvalidContextld, HashNotlnitialized);

/* This operation verifies the digital signature attached
to a file.
@ oseui d 39EB2CAA0017 */
bool ean verifyFile (
i n ContextType contextld,
in CF::FileSystemfil eSystem
in string file
)

rai ses (lnvalidContextld, HashNotlnitialized);

/* This operation hashes the input data into the existing
hash represented by the channel
@ oseui d 39FOD1E70005 */
voi d hashData (
i n ContextType contextld,
in CF::Cctet Sequence data
)

rai ses (lnvalidContextld);
/* This operation signs the hash represented by the

channel .
@ oseui d 39FOCF5C0171 */

D-2

MSRC-5000SEC
Security APl Service Definition
rev. 1.0
Si gnat ur eType si gnHash (

i n ContextType contextld

)
rai ses (lnvalidContextld, NoHashCal cul at ed);

/* This operation verifies that the input signature matches
the signature generated fromthe hash represented by the channe
@ oseui d 39FOCF880142 */
bool ean verifySignature (
i n ContextType contextld,
in SignatureType signature

)
rai ses (lnvalidContextld, NoHashCal cul at ed);

b

interface Controller {
exception InvalidCertificateld {

}s

exception CertificateExpired {

b

/*

@ oseui d 3A0452ECO01F7 */

Cont ext Type createCont ext (
in IdType certificateld

)
raises (lnvalidCertificateld, CertificateExpired);

/*

@ oseui d 3A0452FF015E */

voi d del et eCont ext (
in ContextType contextld
)

rai ses (lnvalidContextld);

1
1
modul e Fill {
/* This enum defines the possible configurations for a fill port.
The | oad operation will behave differently based on the port configuration.
*/
enum Port Type {
PT_DS101,
PT_DS102,
PT_RS232
b
/* This interface nmust be inplenented by the user of a fill port

to support DS102 type fills. */

D-3

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
i nterface PortUser {
/* This operation signals the user to connect the fil
device to the fill port.
@ oseui d 39DB3985034B */
voi d si gnal Connect Devi ce (
in string instruction
)
/* This operation signals the user to set the selector on
the DS102 fill device and then invoke the Fill::Port::|load operation
@ oseui d 39DB3869005D */
voi d signal Load (
in string instruction
);
/* This operation signals the user to assign an ID to the
fill data after being input using the Fill::Port::|load operation
The user will then invoke the requisite storeDS102 operation
@ oseui d 39DB2F4D0353 */
voi d signal Assignld (
in string instruction
);
1
/* This is the interface for filling the radio froma file (e.qg.

black fills). A channel of type CT_BUSS FILL nust be created first. */

i nterface Bus {
exception FileNotValid {

b

/* This operation loads fill data froma file.
@ oseui d 39EC9907025F */
void load (

in CF:.:FileSystemfileSys,

in string fil eNane

)
b

enum LoadResul t Type {
LR_COWPLETED
LR_DEVI CE_ERROR
LR_CORRUPTED_LOAD

b

[* This interface provides functionality for controlling a fil
port. */

interface Port {
/* This operation configures the port for one of
DS101, DS102 or RS232 operation.
@ oseui d 39DB3B690134 */
voi d configure (
in PortType type

D-4

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
)
/* This operation enables the fill port represented by an
object with the Fill::Port interface
@ oseui d 39DB3C0O3037A */
void enable ();
/* This operation disables the fill port represented by an

object with the Fill::Port interface
@ oseui d 39DB3C080273 */
voi d disable ();

/* This operation causes data to be |oaded fromthe fil
device into the Fill::Port.
If the port is configured for DS101 then the |oad is autonmated and the fil
information is

automatically distributed to various fill locations. |f the port is
configured for DS102 then only one
fill is perforned (i.e. one key, one hopset, etc.). |If the port is

configured for RS-232..
@ oseui d 39E355E500E9 */
LoadResul t Type |l oad ();

1
/* This interface provides for zeroizing and obtaining the
identity of fill data in the radio. */

i nterface Manager {
exception Invalidld {

1

exception Zeroi zeFail ed {

b

exception El ementlnUse {

1

/* This operation zeroizes the fill element identified by

@ oseui d 39E338460149 */
voi d zeroize (

in IdType id,

i n bool ean override

)

rai ses (lnvalidld, ElenmentlnUse, ZeroizeFailed);

/* This operation zeroizes all fill elenments associ ated
with the manager. (e.g. keys for a Key Manager)
@ oseui d 39E33846015D */
void zeroi zeAll ()
rai ses (ZeroizeFailed);

/* This operation gets a list of all the IDs for which the

manager i s responsible (e.g. the IDs of all the algorithnms |oaded in to an
Al gorithm Manager.

D-5

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
@ oseui d 39E338460171 */
void getlds (
out | dSequenceType ids
);
/*
@ oseui d 39EF54900101 */
bool ean expiry (
in I dType id,
out DateType date,
out TODType tine
)
rai ses (lnvalidld);
1
b
nodul e Key {
/* This interface represents the fill managenent interface for
key fills. */
i nterface Manager : Fill::Manager {
exception NoKey {
b
exception KeylnUse {
1
exception Duplicateld {
b
/* Store the 102 fill data with the nane provided in ID

@ oseui d 39E3637B0072 */
voi d storeKey (
in IdType id

)
rai ses (Duplicateld, Invalidld, NoKey);

/* Performa key update on the key identified by ID.
@ oseui d 39DC8745038C */
bool ean update (

in IdType id

)

rai ses (lnvalidld, KeylnUse);
/* Get the current update count for the key identified by

@ oseui d 39E359C8000D */
oct et get Updat eCount (
in IdType id
)

rai ses (lnvalidld);

D-6

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
i
nodul e Al gorithm {
/* This interface represents the fill managenent interface for
algorithmfills. */
i nterface Manager : Fill::Manager {

}s
b

nodul e Transec {

/* This structure defines the channel configuration paranmeters
for a type 1 transec channel. */

struct Channel Confi gType {

/* ldentifies the transec algorithm */
| dType al gorithm
/* ldentifies the transec key. */

| dType key;

1

exception InvalidChannelld {

1

exception InvalidSeedType {

b

exception InvalidSeedVal ue {

1

/* This interface represents the fill managenent interface for

transec fills.

i nterface Manager : Fill::Mnager {
exception Duplicateld {
1
/* Store the 102 fill data with the name provided in ID.

@ oseui d 39E3641B0194 */
voi d storeTransec (
in IdType id
)
rai ses (Duplicateld, Invalidld);

/* Get the type 2 transec fill data identified by ID.
@ oseui d 39E35DDBO1F8 */
voi d get TransecUFi || (

in IdType id,

out CF::CctetSequence fil

)

rai ses (lnvalidld);

D-7

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

}s

[* This interface is used for creating and destroying type 1
transec channels. */

interface Controller {
exception InvalidAl gorithmd {

}s

exception InvalidKeyld {

b

exception Not TRANSECAI gorithm {
3

exception ResourcesUnavail abl e {

}s

exception KeyAl gorithmM smatch {
1

/* This operation instantiates a type 1 transec channel
@ oseui d 39E72FC4008C */
Channel 1 dType createTransecCChannel (
i n Channel Confi gType configlnfo
)
rai ses
(I'nvalidAl gorithm d, I nval i dKeyl d, KeyAl gorithmM smat ch, Not TRANSECAI gorit hm Res
our cesUnavai |l abl e) ;

/* This operation gets the configuration of a type 1
transec channel
@ oseui d 39E735ED010C */
voi d get TransecCChannel Config (
in IdType channel
out Channel Confi gType configlnfo
)

rai ses (IlnvalidChannelld);

/* This operation destroys a type one transec channel
@ oseui d 39F0AC530002 */
voi d destroyTransecCChannel (

i n Channel | dType channe

)

rai ses (IlnvalidChannelld);
b

/* This interface is used for generating type 1 transec key
streams. */

i nterface Provider {
exception Channel | nAl arm {

}s

exception DeviceError {

D-8

I nval i dChannel | d,

the al gorithm

I nval i dChannel 1 d,
}s
b

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

}s

exception UnknownError {

b

/* Generate a type 1 transec key streamwi th a new seed.
@ oseui d 39E73749006C */
voi d genKeyStream (
i n Channel | dType channel,
in any seed,
in unsigned |long nunBits,
out CF::CctetSequence keyStream
)
rai ses (Channel I nAl arm Devi ceError,
I nval i dSeedType, Invali dSeedVal ue, UnknownError);

/* CGenerate a type 1 transec key stream wi t hout reseeding

@ oseui d 39E73849034F */
voi d genNext KeyStream (

i n Channel | dType channel,

in unsigned | ong nunbits,

out CF::Cctet Sequence keyStream

)

rai ses (Channel I nAlarm Devi ceError,
UnknownError);

nodul e Al arm {

/* This enum defines the type of security alarmthat will be
generated as an audit event in the |ogger. */

enum Event Type {

s

AE_| NTEGRI TY_VI OLATI ON,
AE_OPERATI ONAL_VI OLATI ON,
AE_PHYSI CAL_VI OLATI ON,
AE_SERVI CE_VI OLATI ON,
AE_TI ME_DOMAI N_VI OLATI ON

/* This enum defines the severity of the alarmevent. */

enum SeverityType {

}s

AS_| NDETERM NATE,
AS_CRI TI CAL,
AS_MAJOR,

AS_M NOR,
AS_WARNI NG

/* This is enumindicates the cause of the crypto alarm */

D-9

audi t

| og.

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

enum CauseType {
AC _DUPLI CATE_I NFQ,
AC_| NFO_M SSI NG,
AC_| NFO_MOD_DETECTED,
AC_| NFO_OUT_OF_SEQUENCE,
AC_UNEXPECTED _| NFO,
AC_DENI AL_OF_SERVI CE,
AC_OUT_OF_SERVI CE,
AC_PROCEDURAL _ERROR,
AC_UNSPECI FI ED_REASON,
AC_CABLE_TAMPER,
AC_| NTRUSI ON_DETECTI CN,
AC_AUTHENTI CATI ON_FAI LURE,
AC_BREACH_OF _CONFI DENTI ALI TY,
AC_NON_REPUDI ATI ON_FAI LURE,
AC_UNAUTHORI ZED_ACCESS_ATTEMPT,
AC _DELAYED | NFO,
AC_KEY_EXPI RED,
AC_OUT_OF_HOURS_ACTI VI TY

b

/* This is a prelimnary definition of an alarmrecord for an
*/

struct RecordType {
Event Type event,
CauseType cause;
SeverityType severity;
string serviceUser;
string serviceProvider;
string additionallnfo;
string al arnmDet ector;

b

/* This interface is inplenented by the user of a the security

service to receive alarmindications. */

occurred.

b

interface User {
/* This operation signals the user that a crypto al arm has

@ oseui d 39E47E7500CD */
voi d signal Al arm (
in string qualifier

)

nmodul e Crypto {

/* ldentifies how a channel is configured. */

enum Channel Type {
CT_SI MPLEX_RX, /* Receive only operation. */

D-10

MSRC-5000SEC
Security APl Service Definition

rev. 1.0

CT_HALF_DUPLEX, /* The channel supports both
transmit and receive but only one at a tine (the crypto will context switch
bet ween receive and transnit portions of algorithm */

CT_FULL_DUPLEX, /* The channel is configured
for sinultaneous receive and transmt (e.g. not context switching). */

CT_BLACK_SI DE, /* This configures a channe
for black-black encrypt and decrypt (e.g. DAMA orderwi re, |oading of
classified waveforns). */

CT_RED_SI DE /* This configures a channel for
red-red encrypt and decrypt. */

1

/* This structure is used to configure the crypto for operation
and to indicate the configuration of an instantiated channel. */

struct Channel Confi gType {
/* The channel type. Can translate into nmultiple channels
internally to the crypto device. (e.g. full duplex(. */
Channel Type type;
/* The ID of the crypto algorithmto use for the channel
*/
| dType al gorithm
/* The key(s) to use for the channel. Certain waveforns
require the use of nultiple keys. */
| dSequenceType keys;
/* Only valid for CT_BUSS FILL */
| dType certificate;
/* The set of npbdes in which the algorithmw Il operate. */
CF:: StringSequence nodes;
/* The set of properties for the algorithmsuch as straps,
seed, etc. */
CF: :Properties properties;
| dType bypassPolicy;
b

i nterface SingleChannel {
/*
@ oseui d 3A04198A01B8 */
oneway void transform (
in any bypass,
in CF::Cctet Sequence payl oad
);

}s

i nterface Multi Channel {

/*

@ oseui d 3A09586D02B7 */

oneway void transform (
i n Channel | dType channel
i n any bypass,
in CF::CctetSequence payl oad
)

D-11

MSRC-5000SEC
Security APl Service Definition

rev. 1.0
exception Channel | nAl arm {
1
exception DeviceError {
b
exception InvalidChannelld {
b

exception UnknownError {

b

/[* This interface supports bl ack-black and red-red encryption and
decryption only. Baseband data uses an instantiation of the

packet interface for red-black encryption and bl ack-red
decryption. */

i nterface Multi Channel Si ngl eSi ded {
/* Encrypt data using instantiated channel and return in
t he sane octet sequence.
@ oseui d 39E7175B00F4 */
void Encrypt (
i n Channel | dType channel
i nout CF:: CctetSequence data
)
rai ses (Channel I nAlarm Devi ceError,
I nval i dChannel I d, UnknownError);

/* Decrypt data using instantiated channel and return in
the sane octet sequence.
@ oseui d 39E71796030C */
voi d Decrypt (
i n Channel | dType channel
i nout CF::COctetSequence data
)
rai ses (Channel I nAlarm Devi ceError,
I nval i dChannel I d, UnknownError);

b

[* This interface supports bl ack-black and red-red encryption and
decryption only. Baseband data uses an instantiation of the

packet interface for red-black encryption and bl ack-red
decryption. */

i nterface Singl eChannel Si ngl eSi ded {
/* Encrypt data using instantiated channel and return in
the sane octet sequence.
@ oseui d 3A082E5403B8 */
void Encrypt (
i nout CF::CctetSequence data

)

rai ses (Channel I nAlarm DeviceError, UnknownError);

/* Decrypt data using instantiated channel and return in
the sane octet sequence.

D-12

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

@ oseui d 3A082E5403CD */
voi d Decrypt (
i nout CF::QctetSequence data

)

rai ses (Channel I nAl arm DeviceError, UnknownError);

s

/* This interface supports crypto channel creation and

destruction. */

interface Controller {
exception AssurancelLevel {

b

excepti

}s

excepti

b

excepti

b

excepti

}s

excepti

b

excepti

b

excepti

}s

excepti

b

excepti

b

excepti

}s

excepti

b

excepti

b

excepti

}s

excepti

b

on

on

on

on

on

on

on

on

on

on

on

on

on

on

I nval i dKeyl d {

I nval i dAl gorithm d {

I nval i dMode {

I nval i dProperty {

Channel Al readyStarted {

Channel Not St arted {

InvalidCertificateld {

CertificateNot Required {

ChanTypeAl gorithmM smat ch {

I nval i dPolicyld {

Not COMSECAI gorit hm {

Resour cesUnavai | abl e {

KeyAl gorithmM smat ch {

KeyExpi red {

D-13

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

/* Creates a crypto channel and returns a channel 1D.
@ oseui d 39DA02E70354 */
Channel | dType creat eChannel (
i n Channel Confi gType configlnfo
)
rai ses (AssurancelLevel, CertificateNotRequired,
ChanTypeAl gorithmM smat ch, DeviceError, |nvalidAlgorithnd,
InvalidCertificateld, InvalidKeyld, InvalidMde, I|nvalidPolicyld,
I nval i dProperty, KeyAl gorithmM smatch, Not COVSECAI gorithm
Resour cesUnavai | abl e, UnknownError);

/* Destroys an instantiated crypto channel.
@ oseui d 39DA030500E0 */
voi d destroyChannel (

i n Channel | dType channel

)

rai ses (Il nvalidChannel | d, UnknownError);

/* CGets the configuration of an instantiated crypto
channel .
@ oseui d 39E36EF80052 */
voi d get Channel Config (
i n Channel | dType channel,
out Channel Confi gType configlnfo
)

rai ses (IlnvalidChannelld);

/*

@ oseui d 3A045106027B */

voi d startChannel (
i n Channel | dType channel,
in string node
) .
rai ses

(Channel Al readySt art ed, Devi ceError, | nval i dChannel I d, | nval i dvbde, UnknownEr r or)

/*

@ oseui d 3A04511F0262 */

voi d stopChannel (
i n Channel | dType channel ,
in string node
)
rai ses

(Channel Not St art ed, Devi ceError, | nval i dChannel I d, | nval i dvbde, UnknownEr r or) ;

/-k
@ oseui d 3A0451260032 */
voi d reset Channel (
i n Channel | dType channel

)

rai ses (DeviceError,|nvalidChannel | d, UhknownError);

/*
@ oseui d 3A04524E0128 */

D-14

MSRC-5000SEC
Security APl Service Definition
rev. 1.0
void resetCrypto ();

3
nodul e Certificate {

/* This is the interface for nmanagenent of certificate fills. */

i nterface Manager : Fill::Mnager {
i
b
nodul e Policy {
i nterface Manager : Fill::Mnager {
| *

@ oseui d 39EF73350292 */
CORBA: : Pol i cy getPolicy (

in IdType id
3aises (I'nvalidld);
b
;nterface AccessControl Policy : CORBA::Policy {

1
nmodul e Ti me {

i nterface Manager {
exception InvalidVal ue {

b

/*
@ oseui d 3A04573F02FD */
void setTime (

in TODType tine

)

rai ses (lnvalidVval ue);

/*
@ oseui d 3A045747036D */
TODType getTime ();

/*
@ oseui d 3A04575200C0 */
voi d setDate (

in DateType date

)

rai ses (IlnvalidVval ue);

D-15

M SRC-5000SEC
Security APl Service Definition
rev. 1.0
/ *
@ oseui d 3A04575702C6 */
Dat eType getDate ();

b
b
nodul e GPS {
i nterface Manager : Transec:: Manager {
i
b
b
#endi f

D-16

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

M SRC-5000SEC
Security APl Service Definition
rev. 1.0

